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ABSTRACT

This paper presents PPS, a system for locating occurrences of
string keywords stored in the payload of packets using a pro-
grammable network ASIC. The PPS compiler first converts
keywords into Deterministic Finite Automata (DFA) repre-
sentations, and then maps the DFA into a sequence of for-
warding tables in the switch pipeline. Our design leverages
several hardware primitives (e.g., TCAM, hashing, parallel
tables) to achieve high throughput. Our evaluation shows
that PPS demonstrates significantly higher throughput and
lower latency than string searches running on CPUs, GPUs,
or FPGAs.
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1 INTRODUCTION

String searching is one of the most common and important
functions run on computers. It is estimated that 80% of the
world’s data is unstructured [31], meaning that it cannot be
easily queried using a fixed data model. Instead, users must
search through large amounts of log data, JSON files, email,
web pages and other documents to find the relevant patterns.

These searches can have a significant impact on applica-
tion performance. For example, Palkar et al. [23] recently
showed that using string searches to pre-filter data before
feeding it into Spark can provide a 9× improvement in end-
to-end application completion time.

Unfortunately, data is increasingly stored on devices that
cannot provide good search performance. In order to im-
prove the utilization of resources, many data centers have
turned towards a disaggregated architecture [12], in which
storage devices have weak CPUs and little memory. In the
storage community, these devices are commonly referred to
as JBODSÐjust a bunch of disks.

Besides the fact that these machines are łwimpyž, perform-
ing search also requires paying the levitation cost to get data
off the disk. When running search on an x86 CPU, this will be
through PCI-Express, which is a known bottleneck [22, 36].
The fourth generation of this interconnect achieves 128Gbps
over sixteen serial links [28].
In fact, we argue that the general approach of having

an x86 CPU inspect every single byte of incoming data is
fundamentally flawed. With bulk data for storage or big data
applications, themainmode of operation from the x86’s point
of view should be DMA. In other words, the CPU should
only handle metadata or parts of the data required for real
computing (e.g., mapping or transforming).
Given that I/O is a bottleneck and data is distributed on

a large number of machines, we believe there is an exciting
opportunity to leverage the emerging trend of programmable
network ASICs [4] to accelerate string search. After all, net-
working interconnects can easily reach high throughput per-
formance of multi-Tbps. Moreover, in purely economic terms,
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using a dedicated ASIC for search would be less expensive
than increasing the specifications of storage servers.
However, implementing string search on an pro-

grammable networking ASICÐi.e., one that implements the
Protocol Independent Switch Architecture (PISA) [5]Ðis
non-trivial. The hardware imposes constraints on, among
other things, the number of bytes that can be examined in
the packet header and number of match-action stages in
a pipeline. Moreover, the main language used to program
the devices, P4, is intentionally computationally restricted,
as it excludes looping constructs, which are undesirable in
forwarding pipelines. Because string search requires both
iteration and accessing deep in the payload, it is often used
as the archetypal example of an application that is a poor fit
for programmable network ASICs.
In contrast to this conventional wisdom, we argue that

programmable ASICs provide a distinctive set of hardware
featuresÐa much larger number of interfaces compared to
an FPGA or Smart NIC, a large amount of fast SRAM relative
to a CPU, and a high-degree of parallelismÐthat make them
well-suited to the task of high-throughput string search. The
challenge is implementing string search in a way that best
use these hardware features.

Towards this goal, we present PISA-based Parallel Search
(PPS), a system for locating occurrences of string keywords
stored in the payload of packets. The intuition behind PPS
is to store DFA state transitions in the match tables of the
pipeline. However, to achieve high-performance, PPS relies
on two key techniques. First, PPS partitions the DFA into a
set of smaller DFAs that run in each stage, allowing PPS to
benefit from the pipeline parallelism inherent in the ASIC
design. This also allows PPS to use the relatively small (com-
pared to DRAM) on-chip SRAM more efficiently. Second, in
order to increase throughput, PPS uses switch SRAM and
TCAM to support larger DFA stride sizes (i.e., the number of
characters matched per transition). Beyond these key tech-
niques, PPS provides an optimization that trades-off accuracy
for memory usage by matching on the CRC16 hash of the
input characters, rather than the characters themselves.

We have implemented a prototype of PPS, which includes
a compiler, a custom network controller, and a small client
application to send data to the network. We have also incor-
porated our prototype into Apache Spark, allowing PPS to
accelerate basic data analytics.

We evaluated PPS on two Spark jobs inspired by real-world
applications, and a set of micro-benchmarks. Our experi-
ments show that offloading Spark filtering to PPS provides a
speedup up to 6.5x. And, the micro-benchmarks demonstrate
that running the full PPS workflowÐincluding pattern com-
pilation, rule installation, and streaming the data through
a remote ASICÐhas a faster search completion time than
running Unix grep locally.

In summary, this paper makes the following contributions:

• Provide the first implementation of per-packet string
matching on a programmable ASIC.
• Describe techniques to leverage the inherent ASIC pipeline
parallelism by partitioning a DFA into smaller DFAs run-
ning in each stage.
• Present techniques that increase throughput by efficiently
using SRAM and TCAM to increase the DFA stride size.

The rest of this paper is organized as follows. We provide
a short summary of various approaches to string searches
(ğ2). We then discuss the design of PPS (ğ3), our pattern com-
pilation technique (ğ4) and prototype (ğ5). After a discussion
(ğ6), we present the results from our experimental evaluation
(ğ7), discuss related work (ğ8), and conclude (ğ9).

2 BACKGROUND

There is a long history of research on string searching algo-
rithms, and we are unlikely to improve the performance via
a purely algorithmic solution. Instead, we seek to adapt an
existing algorithm to best utilize the characteristics of the
new domain-specific machine: the programmable network-
ing ASIC. Below, we discuss the most well-known solutions,
focusing on the suitability for PISA.
More formally, the string search problem is defined as

follows. Let Σ be an arbitrary alphabet. Given a text string
t = t1 . . . tn and the pattern string p = p1 . . .pm , where
each ti and pi are characters in Σ, then output the set of all
positions in t where an occurrence of p starts as a substring.
The naïve algorithm iterates over every index of t , and

checks if the string starting from that index matches p, run-
ning in Θ(nm) time. Searching for multiple patterns requires
iterating over the string multiple times, once for each pattern.
This algorithm could be implemented on PISA, but it would
be unnecessarily slow.
The Boyer-Moore algorithm [6], used by Unix grep

matches on the tail of the pattern, rather than the head,
and uses information gathered in a pre-processing step to
jump ahead multiple characters, rather than advancing one
index at a time. This reduces the best case running time to
Ω(n/m), but the worst case time is still O (mn). It also re-
quires Θ(k ) space, where k = |Σ| is the size of the alphabet.
The implementation would be similar to the naïve algorithm.

The Rabin-Karp algorithm [18] speeds up the comparison
of the pattern with the substring of t by using a hash func-
tion. This reduces the running time to Θ(m) time. However,
Rabin-Karp is not a good match for a PISA for two reasons.
First, it requires computing the sliding hash of the text being
searched. This would require a large number of hash units,
which does not scale on hardware. Second, there may be hash
collisions, in which case the algorithm reverts to comparing
the two strings index by index anyways.
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Instead, PPS is based on the Aho-Corasick algorithm [2].
Aho-Corasick, which was the basis of the original fgrep
command, runs in O (n +m + z) time, where z is the number
of matches. The algorithm constructs a finite-state machine
that resembles a trie, with additional edges between nodes
that share a common prefix.

3 DESIGN OVERVIEW

At a high-level, PPS implements a finite-state machine in the
pipeline of a PISA switch to search for patterns in the payload
of packets. PPS extends this basic design with optimizations
to effectively utilize the switch hardware.
The PPS state machine works at byte level granularity.

Thus, PPS works with binary data or ASCII strings. It does
not make any assumptions about the character encoding
(e.g., UTF-8, UTF-16, etc.) or length of the pattern.

Our prototype implementation assumes that input packets
have Ethernet, IP, and UDP headers. It begins searching at the
UDP payload. However, this is not inherent to the design, and
PPS could just as easily start the search from the beginning of
the packet. PPS searches for patterns throughout the entire
packet, using recirculation to examine deep into the payload.
Furthermore, it assumes the switch is not oversubscribed
and thus no packet loss.

If PPS detects a matching packet, it emits a new packet that
contains a custom header, indicating which packet matched,
as well as the offset of where the match occurred.

3.1 Expected Deployment

PPS can be deployed in two ways: as a dedicated appliance,
or as a network switch that also does bump-in-the-wire pro-
cessing. However, in order to search deep into the packet
payload, PPS relies on re-circulation and it must discard the
initial portion of the packet at each iteration. Therefore, a
bump-in-the-wire deployment would require access to some
external memory architecture to buffer packets [19]. When
deployed as an appliance, the ASIC program is relieved of
the responsibility of forwarding packets, and more resources
can be dedicated to searching.
In either case, the switch is configured to run the PPS

data plane pipeline. Conceptually, the pipeline consists of
a sequence of tables that contain state machine transitions.
Note that the pipeline is completely static. It is compiled once
when PPS is deployed, and does not change when search
patterns are updated.

The PPS controller process compiles patterns and installs
table entries on the switch. These entries are dynamic, and
are re-generated whenever there is a new search pattern.

The controller process is divided into two parts: the server
sends rules to the switch and the agent receives the rules and

Server
Server
Server

PPS 
Switch

 
 

Controller

DFA Compiler Agent

Figure 1: Expected deployment.

installs them via the control plane API. PPS uses a custom
controller agent to reduce serialization overhead.
Applications that use PPS run on servers connected to

the switch. In order to use PPS, they must send the data to
be searched to the switch. Our prototype implementation
includes a small library that reads a stream of data and sends
it to the switch, one chunk per packet.

Figure 1 shows an example deployment, which is the same
deployment used in the Spark experiments described in Sec-
tion 7. There are three servers connected to the PPS switch.
A fourth server acts as the controller process. The servers
have multiple NIC interfacesÐas is common in data center
deploymentsÐand the second interface is used to provide
external network connectivity.

4 PATTERN COMPILATION

The PPS compiler has two main tasks. First, it converts a set
of search patterns into a k-stride DFA. Second, it maps the
DFA into a pipeline of match action tables.

Patterns to k-stride DFA. PPS takes a set of search patterns
as input. Patterns can be arbitrary regular expressions. How-
ever, all of our experiments use inputs that are finite strings
(i.e., only concatenation operator), which are converted to
acyclic DFAs. As we will discuss in Section 6, handling arbi-
trary DFAs is expensive.

PPS differs from the standard Aho-Corasick algorithm in
that it uses a k-stride DFA. The stride size of a DFA refers
to how many characters are read for each transition. For
example, a stride size of 2 means that the implementation
reads 2 character per transition.

Increasing the stride size increases the throughput. How-
ever, the throughput improvement comes at the cost of mem-
ory, as the size of the state transition table increases with
the stride. With a stride size of s and an alphabet Σ, there are
|Σ|s transitions per state.
The algorithm to convert a set of patterns to a k-stride

DFA is as follows. The compiler first converts the patterns
to a nondeterministic finite automata (NFA) using the Aho-
Corasick algorithm [2]. It then transforms the NFA to a DFA
using subset construction [3]. Finally, to convert the DFA to
a k-stride DFA, the compiler computes the k-stride closure
on each node in the 1-stride DFAÐfor each state s , a new
transition is added for each state s ′ that is reachable in k

characters from s . In Figure 2, the DFA on the right is the
2-stride equivalent of the DFA on the left. Both machines
match the string łdogž.
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Figure 2: DFAs with different strides for "dog".

Match Actionstate chars
0 do set_state(1)
3 og accept(4)
1 g⁎ accept(2)
0 ⁎d set_state(3)

Figure 3: Table for 2-stride (k=2) DFA

Patterns can occur at any offset within the input string,
and patterns may not be multiples of the stride size, k . This
means that some transitions need to ignore some characters
to match the start and end of the string. For example, the 2-
stride DFA in Figure 2 with pattern łdogž has start transitions
*d and do (ł*ž matches any character). Likewise, some of the
terminal transitions also include ł*ž and can be implemented
with ternary matching.

k-strideDFA toMAUPipeline. The DFA is then translated
to the match-action abstraction. The switch has a pipeline
of tables that is compiled once and can be used to execute
any DFA. The DFA is installed in the tables at runtime.

The first step is to represent the DFA as a state transition
table. Figure 3 shows the table corresponding to the 2-stride
DFA in Figure 2. A naïve approach would be to store one big
transition table in the pipeline that performs a single tran-
sition. However, this would limit the number of characters
consumed per pipeline pass. Instead, we replicate the tran-
sition table on all stages. This way, multiple transitions are
performed per pass, increasing throughput by the number
of stages. Given the current state and the current k input
characters, each stage transitions to the next state.
To store the DFA on the switch, we leverage different

types of memory. DFA transitions that consume exactly k

characters require an exact match, which is stored in SRAM.
The start and end transitions that match less than k charac-
ters require ternary matching; these transitions are stored in
TCAM. In each stage, first the exact match table is applied; if
no entry matches, then the TCAM table is applied. If none of
the tables match, then the default action is executed, setting
the state to 0. This is an implicit transition to the start state.

4.1 Optimizations

Multiple DFAs. Memory is a scarce resource on switches.
To reduce memory usage, we split the DFA into multiple
smaller DFAs, which run in parallel on the switch. We do
this by partitioning the patterns into multiple subsets, and
constructing a DFA from each subset of patterns. The ag-
gregate size of these DFAs (# transitions) is smaller than
that of one large DFA containing all the patterns. This is

because patterns with similarities can cause an explosion
in the number of transitions. An optimal partitioning of the
patterns yields a set of DFAs with the smallest aggregate size.
We leave finding the optimal partitioning for future work.
Currently, we partition the patterns randomly multiple times
and pick the best one. We chose to use 3 parallel DFAs in our
pipeline because: it is the most number of splits before the re-
turns diminish; and, coincidentally, it is the most that we can
fit in the our hardware switch due to resource limitations.

Tunable pipeline. In the pipeline design outlined above,
every stage in the ingress and egress pipeline performs a DFA
state transition. To support more patterns, we can make two
changes: (i) reduce the stride size of the DFA; and (ii) use the
resources of multiple stages to perform a single transition.
By reducing the stride size, the number of transitions in
the DFA is reduced, producing a more compact DFA. By
performing fewer transitions, we can combine the resources
of multiple stages. For example, if the DFA representation
does not fit within the resources of a single stage, we can
split it across two stages. These optimizations come at the
expense of throughput, which we explore in the evaluation.

4.2 Approximation

We observe that for some applications accuracy is not a
strict requirement, such as with approximate streaming ana-
lytics [26]. We can trade-off accuracy for reduced memory
usage by storing a hash of characters. Matching each charac-
ter in the stride size, k , requires storing k bytes per transition.
Instead, the switch can compute a CRC16 hash of the k char-
acters. Some hash collisions are detected at compile time (i.e.
two different transitions out of the same state have the same
hash). In this case, we use perfect hashing: the compiler finds
a different hash function (CRC with a different polynomial)
that doesn’t produce collisions, and updates the pipeline to
use that hash function. Hash collisions that occur at runtime
will produce false positives and false negatives.

5 IMPLEMENTATION

We have implemented a PPS prototype running on a Barefoot
Tofino switch. At its core, the prototype includes a DFA
compiler written in Python (365 LOC), as well as the DFA
data plane program written in P4 (4754 LOC).

Controller. The Barefoot Networks switch agent offers a
Thrift [1]-based API, which requires serializing and installing
each table entry one-by-one. To reduce overhead, we imple-
mented a custom agent that uses a binary serialization format
and installs entries in bulk. This optimization reduces entry
installation time from tens of seconds to milliseconds.

Data Levitation. Our prototype includes a client library
that sends data to the switch. Because PPS searches one
packet (chunk) at a time, it is most suitable for data that can
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be partitioned into chunks (e.g. lines, records). If the data is
a continuous stream of bytes that cannot be partitioned, the
client can format the data as overlapping chunks.
The client library is implemented in C and runs in

userspace. It would be possible to use DPDK [9], which could
support higher throughput and lower CPU load. Recent work
by Kim et al. demonstrates that a Tofino switch can serve
as an RDMA end-point [19]. One could imagine connecting
the switch to JBODS via RDMA. Accessing the data from
the storage servers would completely eliminate the use of
the server CPU for searching, allowing it to focus on other
storage tasks, e.g., error correction, de-duplication, etc.

6 DISCUSSION

Our prototype provides significant performance benefits to
applications as described in our evaluation. However, there
are some limitations on the formatting of input data and the
types of search patterns supported.

Input Alignment.Data chunks sent to PPS must be aligned
to the packet. If a chunk spans multiple packets, a potential
match split across the packets will not be detected. To address
this, as described above, our client can generate overlapping
chunks, which uses more bandwidth. To ensure that matches
are detected, the overlap must be the size of the longest
search pattern. Furthermore, the chunk must be less than
the network Maximum Transmission Unit (MTU).

Recirculation. In one pipeline pass, PPS can search a fixed
number of bytes in the packet:k times the number of pipeline
stages. To search deeper, the packet is recirculated through
the pipeline. At the end of each pipeline pass, the bytes
that were just searched are truncated from the packet. For
example, with 4 recirculations, the first pass searches the
entire packet; the second 3

4 of the packet; the third
2
4 ; and the

fourth 1
4 . Thus, one packet actually uses more bandwidth:

1+ 3
4 +

2
4 +

1
4 =

10
4 . This is

6
4 times the bandwidth for a single

pass. The bandwidth overhead factor can be generalized to
n−1
n+1 , where n is the number of recirculations. Although this
reduces the overall throughput, it is still orders of magnitude
higher than that of other solutions (discussed in Section 8).

Generalizing to Regular Expressions. The technique we
described for searching fixed patterns also generalizes to Reg-
ular Expression (RegEx)matching. Our compiler supports the
Kleene star operator, alternation, and concatenation. It also
supports character classes using alternation. However, we
found that complex expressions result in a DFA state space
explosion, using more switch memory. This is especially the
case for character classes, which require exact transitions
for all the characters in the class, which cannot leverage the
ternary matching of TCAMs. To enable more efficient RegEx
matching, it could be possible to translate each input byte to
a symbolic value, reducing the number of table entries.

7 EVALUATION

Our evaluation focuses on three questions: (i) How does
PPS help with end-to-end application performance? (ii) How
does PPS performance vary with the number of patterns? and
(iii) How does PPS performance compare to state-of-the-art
software and hardware solutions.

Experimental setup. We ran PPS on a 32x100G port Bare-
foot Tofino switch connected to a 4-node cluster with
QSFP+ breakout cables. Each server has 12 cores (dual-socket
1.6GHz Intel Xeon E5-2603 CPUs), 16GB of 1600MHz DDR4
memory, and an Intel 82599ES 10Gb Ethernet controller. For
our microbenchmarks, we randomly selected non-disjoint
łcontentž patterns from the Snort [30] community ruleset.

7.1 End-to-end Application Performance

We used PPS to accelerate two Spark filtering jobs: scanning
e-mails and filtering Twitter tweets. For the baseline, we use
Spark SQL, which partitions the filtering among the worker
cores. We compare this to a Spark program that pipes the
data to PPS for filtering. In both cases, the Spark job executes
a reduce stage that aggregates the sum of matching lines or
JSON records. As we increase the number of patterns, the
end-to-end runtime with PPS stays constant.

ScanningE-mailswith Spark.Wedid a line-by-line search
of the łPodesta E-mailsž: a collection of 50K e-mails (4.7GB)
published by WikiLeaks in 2016 [25]. Figure 4a shows the re-
sults for searching an increasing number of patterns. Spark’s
execution time increases steadily and jumps above a minute
after 96 (a multiple of 12 cores) because of query planning.
PPS consistently searches the entire file in under 3 seconds.

Filtering Tweets with Spark. Inspired by the evalua-
tion in Sparser [23], we filtered 212GB of JSON tweets
collected using the Twitter Streaming API [15]. In ad-
dition to using unstructured patterns, we also searched
for structured JSON key/values, e.g. "lang":"ro" and
"filter_level":"medium". Figure 4b shows the results.
Spark SQL chooses a poor query plan with fewer than 12
patterns (which explains the dip); at 12 patterns, it has simi-
lar performance to PPS, but slowly reduces as the number of
patterns increases. For 128 search strings, Spark takes 35.4
minutes, compared to 5.43 min for PPS (6.5x speedup).

7.2 Microbenchmarks

PPS vs Grep. For a direct comparison to grep, we measure
the end-to-end time to search a 12GB log file. The file is stored
in a RAM disk, because otherwise disk I/O (not compute) is
the dominant factor in the search time. For PPS, the end-to-
end time includes: (i) sending the patterns to the controller,
(ii) compiling rules from the DFA, (iii) installing the rules and
sending an acknowledgement to the client, and (iv) streaming
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Figure 4: PPS end-to-end experiments and micro-benchmarks.

the data to the switch. Figure 4c shows the search time for an
increasing number of patterns. For a single pattern, both have
similar performance. For multiple patterns, grep’s runtime
increases, while PPS remains constant. This demonstrates
that there are clear performance benefits, even including the
overhead of sending data to the network.

Pattern Complexity vs. Throughput. Ideally, the switch
would have an unlimited amount of memory that could hold
as many patterns as necessary. However, in reality, to be able
to process data at line rate, the switch has a fixed amount of
memory. As the number (or complexity) of patterns increases,
the stride size of the DFA has to be reduced to fit the DFA
in the switch memory. To further reduce memory usage, we
can also split the DFA into multiple DFAs (ğ 4.1).
We calculated the throughput achievable for workloads

with an increasing number of patterns.We randomly selected
patterns from the Snort ruleset that are up to 32 characters
long, which is the case for over 80% of the rules. We then
compiled the patterns into a DFA with the largest stride size
that would fit on the switch. Figure 4d shows the throughput
using a single DFA (red) andmultiple DFAs in parallel (green).
Note that these are theoretical values that we calculated. It
is reasonable to calculate the throughput (instead of testing
it experimentally), because a compiled P4 program runs at
the speed of the architecture with a fixed number of stages
and bounded memory access time.

7.3 Comparison to State-of-the-Art

To provide context for PPS performance, we briefly report
results from comparable state-of-the-art solutions. To be
clear, these results are not direct benchmark comparisons
and are not collected using the same workloads. Using a
GPU, Hsieh et al. [13] reached 150Gbps for 20 Snort patterns.
Titan IC’s Helios ASIC [34] reports 100Gbps for 1 million
rules. DFC [8] achieves 45Gbps using x86 servers. With a
single recirculation and a stride size of 4, PPS can search 100
Snort patterns at 3.8Tbps on a 64-port Tofino.

8 RELATED WORK

DFAs. Prior work has explored compacting DFAs [24]. Sher-
wood et al. [32] proposed splitting a DFA into DFAs that
match a subset of the input bits. The NetKat [29] compiler

matches packets using a Binary Decision Diagram, which
has a structure similar to a DFA.

Hardware solutions. There are several techniques for us-
ing TCAMs, including compacting transition symbols and
states [14], using LPM to share state [7] and variable strid-
ing [20]. DFC [8] uses cache-friendly data structures for pat-
tern matching on general purpose CPUs. Others have imple-
mented pattern matching on GPUs [13, 16, 35]. HAWK [33]
implements an FPGA pipeline using a bitsplit technique pro-
posed by Sherwood et al.. HARE [10] adds RegExp support
to HAWK by adding a character class translation stage to
the pipeline, as well as counters for RegExp quantifiers.

In-network computation. Programmable ASICs have
been used for telemetry [21] and stream processing [17].
Sonata [11] accelerates basic filters and aggregations from
Spark queries in the data plane. Sapio et al. [27] also perform
aggregation tasks in programmable switches. None of this
prior work performs string searches.

9 CONCLUSION

PPS is inspired by the observation that PISA is well-suited
for particular computing tasks. Some of the common char-
acteristics of those tasks are: (i) the I/O to compute ratio is
high, (ii) the space complexity of the computing algorithm
(i.e., amount of memory required during computing) is low
and independent of the size of the input workloads fed to
PISA via I/O, and (iii) the computing algorithm is branch
heavy. String search has these characteristics.

Searching in strings is a fundamental problem in computer
science, and improving the performance of the algorithm
can have significant impact on a wide variety of applications.
We have described a set of implementation techniques that
build on the classic Aho-Corasick algorithm, while efficiently
utilizing hardware primitives (e.g., TCAM, hashing, parallel
tables) to achieve high throughput string searching on a
programmable network ASIC. Compared to state-of-the-art
alternatives on CPUs, GPUs, and ASICs, PPS offers orders of
magnitude improvements in throughput.
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