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Abstract
We present the nanoPU, a new NIC-CPU co-design to

accelerate an increasingly pervasive class of datacenter appli-

cations: those that utilize many small Remote Procedure Calls

(RPCs) with very short (µs-scale) processing times. The novel

aspect of the nanoPU is the design of a fast path between the

network and applications—bypassing the cache and memory

hierarchy, and placing arriving messages directly into the CPU

register file. This fast path contains programmable hardware

support for low latency transport and congestion control as

well as hardware support for efficient load balancing of RPCs

to cores. A hardware-accelerated thread scheduler makes sub-

nanosecond decisions, leading to high CPU utilization and

low tail response time for RPCs.

We built an FPGA prototype of the nanoPU fast path by

modifying an open-source RISC-V CPU, and evaluated its per-

formance using cycle-accurate simulations on AWS FPGAs.

The wire-to-wire RPC response time through the nanoPU

is just 69ns, an order of magnitude quicker than the best-of-

breed, low latency, commercial NICs. We demonstrate that

the hardware thread scheduler is able to lower RPC tail re-

sponse time by about 5× while enabling the system to sustain

20% higher load, relative to traditional thread scheduling tech-

niques. We implement and evaluate a suite of applications,

including MICA, Raft and Set Algebra for document retrieval;

and we demonstrate that the nanoPU can be used as a high

performance, programmable alternative for one-sided RDMA

operations.

1 Introduction

Today, large online services are typically deployed as multiple

tiers of software running in data centers. Tiers communicate

with each other using Remote Procedure Calls (RPCs) of

varying size and complexity [7,28,57]. Some RPCs call upon

microservices lasting many milliseconds, while others call

remote (serverless) functions, or retrieve a single piece of

data and last only a few microseconds. These are important

workloads, and so it seems feasible that small messages with

microsecond (and possibly nanosecond) service times will

become more common in future data centers [7, 28]. For

example, it is reported that a large fraction of messages com-

municated in Facebook data centers are for a single key-value

memory reference [4, 7], and a growing number of papers

describe fine-grained (typically cache-resident) computation

based on very small RPCs [22, 23, 28, 57].

Three main metrics are useful when evaluating an RPC sys-

tem’s performance: (1) the median response time (i.e., time

from when a client issues an RPC request until it receives a

response) for applications invoking many sequential RPCs;

(2) the tail response time (i.e., the longest or 99th %ile RPC

response time) for applications with large fanouts (e.g., map-

reduce jobs), because they must wait for all RPCs to complete

before continuing [17]; and (3) the communication overhead

(i.e., the communication-to-computation ratio). When com-

munication overhead is high, it may not be worth farming out

the request to a remote CPU at all [57]. We will sometimes

need more specific metrics for portions of the processing

pipeline, such as the median wire-to-wire latency, the time

from when the first bit of an RPC request arrives at the server

NIC until the last bit of the response departs.

Many authors have proposed exciting ways to accelerate

RPCs by reducing the message processing overhead. These

include specialized networking stacks, both in software (e.g.,

DPDK [18], ZygOS [51], Shinjuku [27], and Shenango [49]),

and hardware (e.g., RSS [43], RDMA [9], Tonic [2], NeB-

uLa [57], and Optimus Prime [50]). Each proposal tackles

one or more components of the RPC stack (i.e., network trans-

port, congestion control, core selection, thread scheduling, and

data marshalling). For example, DPDK removes the memory

copying and network transport overhead of an OS and lets a

developer handle them manually in user space. ZygOS imple-

ments a scheme to efficiently load balance messages across

multiple cores. Shenango efficiently shares CPUs among ser-

vices requiring RPC messages to be processed. eRPC [28]

cleverly combines many software techniques to reduce me-

dian RPC response times by optimizing for the common case

(i.e., small messages with short RPC handlers). These systems

have successfully reduced the message-processing overhead

from 100s of microseconds to 1–2 microseconds.

NeBuLa [57] is a radical hardware design that tries to

further minimize response time by integrating the NIC with

the CPU (bypassing PCIe), and dispatching RPC requests

directly into the L1 cache. The approach effectively reduces

the minimum wire-to-wire response time below 100ns.

Put another way, these results suggest that with the right

hardware and software optimizations, it is practical and useful

to remotely dispatch functions as small as a few microseconds.

The goal of our work is to enable even smaller functions,

with computation lasting less than 1µs, for which we need to

minimize communication overhead. We call these very short

RPCs nanoRequests.

The nanoPU, presented and evaluated here, is a combined

NIC-CPU optimized to process nanoRequests very quickly.

When designing nanoPU, we set out to answer two questions.
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Figure 1: The nanoPU design. The NIC includes ingress and egress PISA pipelines as well as a hardware-terminated

transport and a core selector with global RX queues; each CPU core is augmented with a hardware thread scheduler

and local RX/TX queues connected directly to the register file.

The first is, what is the absolute minimum communication

overhead we can achieve for processing nanoRequests?

NanoRequests are simply very short-lived RPCs marked by

the client and server NICs for special treatment. In nanoPU,

nanoRequests follow a new low-overhead path through the

NIC, bypassing the OS and the memory-cache hierarchy and

arriving directly into running threads’ registers. All message

reassembly functions, transport and congestion control logic

are moved to hardware, as are thread scheduling and core

selection decisions. Incoming nanoRequests pass through

only hardware before reaching application code. Our nanoPU

prototype can deliver an arriving nanoRequest into a running

application thread in less than 40ns (less than 15ns if we

bypass the Ethernet MAC)—an order of magnitude faster

than the fastest commercial NICs [20] and faster than the

quickest reported research prototype [57]. For compatibility

with existing applications, nanoPU allows all other network

traffic (e.g., larger RPCs) to traverse a regular path through a

DMA NIC, OS, and memory hierarchy.

Our second question is, can we minimize tail response

time by processing nanoRequests in a deterministic

amount of time? The answer is a qualified yes. Because

nanoRequests are processed by a fixed-latency hardware

pipeline, if a single-packet request arrives at a waiting core,

its thread will always start processing the message in less

than 40ns. On the other hand, if the core is busy, or another

request is queued ahead, then processing can be delayed. In

Section 2.2, we show how our novel hardware thread sched-

uler can bound the tail response time in this case too, under

specific assumptions (e.g., that a nanoRequest can bound its

CPU processing time, else its priority is downgraded). We

believe nanoPU is the first system to bound the response time

of short-lived requests.

In summary, the main contributions of the nanoPU are:

1. The nanoPU’s median wire-to-wire response time

for nanoRequests, from the wire through the header-

processing pipeline, transport layer, core selection, and

thread scheduling, plus a simple loopback application and

back to the wire is just 69ns, an order of magnitude lower

latency than the best commercial NICs [20]. Without the

MAC and serial I/O, loopback latency is only 17ns.

2. Our prototype’s hardware thread scheduler continuously

monitors processing status for nanoRequests and makes de-

cisions in less than 1ns. The nanoPU sustains 20% higher

load than existing approaches, while maintaining close to

1µs 99th %ile tail response times.

3. Our complete RISC-V based prototype is available open-

source,1 and runs on AWS F1 FPGAs using Firesim [31].

4. We evaluate a suite of applications including: the MICA

key-value store [38], Raft consensus [47], set algebra and

high dimensional search inspired from the µ-Suite bench-

mark [56].

5. We demonstrate that the nanoPU can be used to implement

one-sided RDMA operations with lower latency and more

flexibility than state-of-the-art commercial RDMA NICs.

The nanoPU ideas could be deployed in a variety of ways:

by adding the low latency path to a conventional CPU, or

by designing new RPC-optimized CPUs with only the low-

latency path, or by adding the new path to embedded CPUs

on smartNICs.

2 The nanoPU Design

The nanoPU is a new NIC-CPU co-design that adds a new

fast path for nanoRequest messages requiring ultra-low and

predictable network communication latency. Figure 1 depicts

1nanoPU Artifact: https://github.com/l-nic/chipyard/wiki
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the key design components. The nanoPU has two independent

network paths: (1) the traditional (unmodified) DMA path

to/from the host’s last-level [16] or L1 cache [57], and (2) an

accelerated fast path for nanoRequests, directly into the CPU

register file.

The traditional path can be any existing path through hard-

ware and software; hence all network applications can run on

the traditional path of the nanoPU unchanged, and perform at

least as well as they do today. The fast path is a nanosecond-

scale network stack optimized for nanoRequests. Applications

should (ideally) be optimized to efficiently process nanoRe-

quest messages directly out of the register file to fully harness

the benefits of the fast path.

Each core has its own hardware thread scheduler (HTS),

two small FIFO memories for network ingress and egress

data, and two reserved general-purpose registers (GPRs): one

as the tail of the egress FIFO for sending nanoRequest data,

and the other as the head of the ingress FIFO for receiving.

CPU cores are statically partitioned into two groups: those

running normal applications and those running nanoRequest

applications. Cores running regular applications use standard

OS software thread scheduling [27, 49, 51]; however, the OS

delegates scheduling of nanoRequest threads to HTS.

To understand the flow of the nanoPU fast path, consider the

numbered steps in Figure 1. In 1 , a packet arrives and enters

the P4-programmable PISA pipeline. In addition to standard

header processing (e.g., matching IP addresses, checking ver-

sion and checksum, and removing tunnel encapsulations), the

pipeline examines the destination layer-4 port number in the

transport header using a match-action table2 to decide if the

message should be delivered along the fast path. If so, it pro-

ceeds to 2 , else it follows the usual DMA processing path

D . In 2 , packets are reassembled into messages; a buffer

is allocated for the entire message and packet data is (poten-

tially) re-sequenced into the correct order. In 3 , the transport

protocol ensures reliable message arrival; until all data has ar-

rived, message data and signaling packets are exchanged with

the peer depending on the protocol (e.g., NDP and Homa are

both receiver driven using different grant mechanisms) (Sec-

tion 2.3). When a message has arrived, in 4 it is placed in a

per-application receive queue where it waits to be assigned to

a core by the core-selection logic (Section 2.3). When its turn

comes, in 5 , the message is sent to the appropriate per-thread

ingress FIFO on the assigned core, where it waits for HTS

(Section 2.2) to alert the core to run the message’s thread and

place the first word in the netRX register (Section 2.1). In 6 ,

the core processes the data and, if running a server application,

will typically generate a response message for the client. The

application transmits a message by issuing instructions that

write one “word” at a time to the netTX register in 7 , where

the word size is defined by the size of a CPU register, typically

64-bits (8B). These message words then flow into the global

2It is the responsibility of the the host software to configure this table

with entries for all nanoRequest processing applications.

transmit queues in 8 . Messages are split into packets in 9 ,

before departing through the egress PISA pipeline.

Next, we detail the design of the main, novel components

of the fast path: the thread-safe register file network interface,

the hardware thread scheduler (HTS), and the programmable

NIC pipeline, including transport and core selection.

2.1 Thread-Safe Register File Interface

Recent work [45] showed that PCIe latency contributes about

90% of the median wire-to-wire response time for small pack-

ets (800–900ns). Several authors have proposed integrating

the NIC with the CPU, to bring packets directly into the

cache [12, 46, 57].

The nanoPU takes this one step further and connects the

network fast path directly to the CPU core’s register file. The

high-level idea is to allow applications to send and receive

network messages by writing/reading one word (8B) at a time

to/from a pair of dedicated CPU registers.

There are several advantages to bringing packet data di-

rectly into the register file:

Message data bypasses the memory and cache hierarchy,

minimizing the time from when a packet arrives on the wire

until it is available for processing. In Section 5.2.1, we show

that this reduces median wire-to-wire response time to 69ns,

50% lower than the state-of-the-art.

Reduces variability in processing time and therefore min-

imizes tail response time. For example, there is no variable

waiting time to cross PCIe, no cache misses for message data

(messages do not enter or leave through memory) and no

IO-TLB misses (which lead to an expensive 300ns access to

the page table [45]). And because nanoRequests are buffered

in dedicated FIFOs, separate from the cache, nanoRequest

data does not compete for cache space with other application

data, further reducing cache misses for applications. Cache

misses can be expensive: A LLC miss takes about 50-100ns

to resolve and creates extra traffic on the (shared) DRAM

memory bus. DRAM access can be a bottleneck for a mul-

ticore CPU, and when congested, memory access times can

increase by more than 200% [60]. Furthermore, contention

for cache space and DRAM bandwidth is worse at network

speeds above 100Gb/s [21].

Less software overhead per message because software does

not need to manage DMA buffers or perform memory-mapped

IO (MMIO) handshakes with the NIC. In a conventional NIC,

when an application sends a message, the OS first places the

message into a DMA buffer and passes a message descriptor

to the NIC. The NIC interrupts or otherwise notifies software

when transmission completes, and software must step in again

to reclaim the DMA buffer. The register file message interface

has much lower overhead: When an application thread sends a

message it simply writes the message directly into the netTX

register, with no additional work. Section 5.2.1 shows how

this leads to a much higher throughput interface.
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2.1.1 How an application uses the interface

The J-Machine [13] first used the register file in 1989 for very

low latency inter-core communication, followed by the Cray

T3D [33]. The approach was abandoned because it proved

difficult to protect messages from being read/written by other

threads sharing the same core; both machines required atomic

message reads and writes [14]. As we show below, our design

solves this problem. We believe ours is the first design to

add a register file interface to a regular CPU for use in data

centers.

The nanoPU reserves two general-purpose registers (GPRs)

in the register file for network IO, which we call netRX and

netTX. When an application issues an instruction that reads

from netRX, it actually reads a message word from the head

of the network receive queue. Similarly, when an application

issues an instruction that writes to netTX, it actually writes a

message word to the tail of the network transmit queue. The

network receive and transmit queues are stored in small FIFO

memories that are connected directly to the register file.3 In

addition to the reserved GPRs, a small set of control & status

registers (CSRs, described in Section 3.4) are used for the

core and NIC hardware to coordinate with each other.

Delimiting messages. Each message that is transmitted and

received by an application begins with a fixed 8B “application

header”. On arriving messages, this header indicates the mes-

sage length (as well as the source IP address and layer-4 port

number), which allows software to identify the end of the mes-

sage. Similarly, the application header on departing messages

contains the message length (along with the destination IP

address and layer-4 port number) so that the NIC can detect

the end of the outgoing message. The programmable NIC

pipeline replaces the application header with the appropriate

Ethernet, IP, and transport headers on all transmitted packets.

Inherent thread safety. We need to prevent an errant thread

from reading or writing another thread’s messages. The

nanoPU prevents this using a novel hardware interlock. It

maintains a separate ingress and egress FIFO for each thread,

and controls access to the FIFOs so that netRX and netTX are

always mapped to the head and tail, respectively, of the FI-

FOs for the currently running thread only. Note our hardware

design ensures this property even when a previous thread

does not consume or finish writing a complete message.4 This

turned out to be a key design choice, simplifying application

development on the nanoPU; nanoRequest threads no longer

need to read and write messages atomically.

Software changes. The register file can be accessed in one

CPU cycle, while the L1 cache typically takes three cycles.

3We think of these FIFO memories as equivalent to an L1 cache, but for

network messages; both are built into the CPU pipeline and sit right next to

the register file.
4Our interlock logic would have been prohibitively expensive in the early

days; but since 1989, Moore’s Law lets us put four orders of magnitude more

gates on a chip, making the logic quite manageable (Section 5).

Application Description
Response Time

p50 / p99 (µs)

MICA
Implements a fast

0.40 / 0.50
in-memory key-value store

Raft
Runs leader-based state

3.08 / 3.26 *
machine replication

Chain Repl.
Runs a vertical Paxos

1.10 / 1.40 *
consensus algorithm

Set Algebra
Processes data-mining and

0.60 / 1.50
text-analytics workloads

HD Search
Analyzes and processes image,

0.80 / 1.20
video, and speech data

N-Body Sim.
Computes gravitational force

0.35 / N/A
for simulated bodies

INT Processing
Processes network telemetry

0.13 / N/A
data (e.g., path latency)

Packet Classifier
Classifies packets for intrusion

0.90 / 2.20
detection (100K rules)

Othello Player
Searches the Othello

0.90 / 1.70 [26]
state space

One-sided RDMA
Performs one-sided RDMA

0.68 / N/A *
operations in software

Table 1: Example applications that have been imple-

mented on the nanoPU. These applications use small

network messages, few memory references, and cache-

resident function stack and variables (in the common

case), and are designed to efficiently process messages

out of the register file. Table indicates median and 99th

%ile wire-to-wire response time at low load. *Measured

at client.

Therefore, an application thread will run faster if it can pro-

cess data directly from the ingress FIFO by serially reading

netRX. Ideally, the developer picks a message data structure

with data arranged in the order it will be consumed—we did

this for the message processing components of the applica-

tions evaluated in Section 5.3. If an application needs to copy

long messages entirely into memory so that it can randomly

access each byte many times during processing, then the reg-

ister file interface may not offer much advantage over the

regular DMA path. Our experience so far is that, with a little

practice, it is practical to port latency-sensitive applications to

efficiently use the nanoPU register file interface. Table 1 lists

applications that have been ported to efficiently use this new

network interface and Section 4 further discusses applications

on the nanoPU.

A related issue is how, and at which stage of processing,

to serialize/deserialize (also known as marshall/unmarshall)

message data. In modern RPC applications this processing

is typically implemented in libraries such as Protobuf [52]

or Thrift [59]. Recent work pointed out that on conventional

CPUs, where network data passes through the memory hi-

erarchy, the serialize/deserialize logic is dominated by scat-

ter/gather memory-copy operations and subword-level data

transformation operations, suggesting a separate hardware

accelerator might help [50]. In the nanoPU, the memory copy

overhead involved in serialization and deserialization is little
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or none; only a few copies between registers and the L1 cache

may be necessary when a working set is larger than the regis-

ter file. The remaining subword data-transformation tasks can

be done either in the applications (in software) or on the NIC

(in hardware) using a PISA-like pipeline, but still operating

at the message level. We currently take the former approach

for the applications we evaluate in Section 5.3, but intend to

explore the latter approach in future work.

2.2 Thread Scheduling in Hardware

Current best practice for low-latency applications is to either

(1) pin threads to dedicated cores [18, 51], which is very

inefficient when a thread is idle, or (2) devote one core to run

a software thread scheduler for the other cores [27, 49].

The fastest software-based thread schedulers are not fast

enough for nanoRequests. Software schedulers need to run

periodically so as to avoid being overwhelmed by interrupts

and associated overheads, which means deciding how fre-

quently they should run. If it runs too often, resources are

wasted; too infrequently and threads are unnecessarily de-

layed. The fastest state-of-the-art operating systems make

periodic scheduling decisions every 5µs [27, 49], which is

too coarse-grained for nanoRequests requiring only 1µs of

computation.

We therefore moved the nanoRequest thread scheduler to

hardware, which continuously monitors message processing

status as well as the network receive queues and makes sub-

nanoseconds scheduling decisions. Our new hardware thread

scheduler (HTS) is both faster and more efficient; a core never

sits on an idle thread when another thread with a pending

message could run.

2.2.1 How the hardware thread scheduler works

Every core contains its own scheduler hardware. When a new

thread initializes, it must register itself with its core’s HTS

by binding to a layer-4 port number and selecting a strict

priority level (0 is the highest). The layer-4 port number lets

the nanoPU hardware distinguish between threads and ensure

that netRX and netTX are always the head and tail of the

FIFOs for the currently running thread.

HTS tracks the running thread’s priority and its time spent

on the CPU core. When a new message arrives, if its desti-

nation thread’s priority is lower than or equal to the current

thread, the new message is queued. If the incoming message

is for a higher priority thread, the running thread is suspended

and the destination thread is swapped onto the core. Whenever

HTS determines that threads must be swapped, it (1) asserts

a new, NIC-specific interrupt that traps into a small software

interrupt handler (only on the relevant core), and (2) tells the

interrupt handler which thread to switch to by writing the

target’s layer-4 port number to a dedicated CSR. Our current

HTS implementation takes about 50ns to swap a previously

idle thread onto the core, measured from the moment its first

pending message arrives (Section 3.2).

If the thread to switch to belongs to a different process, the

software interrupt handler must perform additional work: no-

tably, it must change privilege modes and swap address spaces.

A typical context switch in Linux takes about 1µs [27], but

most of this time is spent making the scheduling decision [62].

Our HTS design makes this decision entirely in hardware and

the software scheduler simply needs to read a CSR to deter-

mine which thread to swap to.

The scheduling policy. HTS implements a bounded strict

priority scheduling policy to ensure that the highest priority

thread with pending work is running on the core at all times.

Threads are marked active or idle. A thread is marked

active if it is eligible for scheduling, which means it has

been registered (a port number and RX/TX FIFOs have been

allocated) and a message is waiting in the thread’s RX FIFO.

The thread remains active until it explicitly indicates that it

is idle and its RX FIFO is empty. HTS tries to ensure that

the highest priority active thread is always running.

Bounded response time. HTS supports a unique feature to

bound how long one high-priority application can hold up

another. If a priority 0 thread takes longer than t0 to pro-

cess a message, the scheduler will immediately downgrade

its priority from 0 to 1, allowing it to be preempted by a dif-

ferent priority 0 thread with pending messages. (By default,

t0 = 1µs.) We define a well-behaved application as one that

processes all of its messages in less than t0.

As a consequence, HTS guarantees an upper bound on

the response time for well-behaved applications. If a core is

configured to run at most k priority 0 application threads, each

with at most one outstanding message at a time, then the total

message processing time, tp for well-behaved applications

is bounded by: tp ≤ tn + kt0 +(k−1)tc, where tn is the NIC

latency, and tc is the context-switch latency. In practice, this

means an application developer who writes a well-behaved

application can have full confidence that no other applications

will delay it beyond a predetermined bound. If application

writers do not wish to use the time-bounded service, they may

assign all their application threads priority 1.

Writing well-behaved applications, which are able to pro-

cess all messages within a short, bounded amount of time,

is complicated by cache / TLB misses and CPU power man-

agement. Our approach so far has been to empirically verify

that certain applications are well-behaved. However, we be-

lieve that there is substantial opportunity for future research

to determine more systematic ways for developers to write

well-behaved applications. One approach may be to propose

modifications to the memory hierarchy in order to make ac-

cess latency more predictable. Another approach may be to

develop code verification tools to check whether threads meet

execution time bounds. The eBPF [19] compiler, for example,

is able to verify that a packet processing program will com-

plete eventually; we believe a similar approach can be used

to verify completion within a bounded amount of time.
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2.3 The nanoPU NIC Pipeline

The NIC portion of the nanoPU fast path consists of two

primary components: the programmable transport layer, and

the core-selection algorithm. We describe each in turn.

Programmable transport layer. The nanoPU provides

nanoRequest threads a reliable one-way message service. To

be fast enough, the transport layer needs to be terminated

in hardware in the NIC. For example, our prototype hard-

ware NDP implementation (Section 3.3) runs in 7ns (fixed)

per packet and at 200Gb/s for minimum size packets (64B).

Such low latency means a tight congestion-control loop be-

tween end-points, and hence more efficient use of the network.

Moreover, moving transport to hardware frees CPU cycles for

application logic [2].

We only have space to give a high level overview of our

programmable transport layer, leaving details to a follow-on

paper. At the heart of our programmable transport layer is an

event-driven, P4-programmable PISA pipeline [10, 25]. The

pipeline can be programmed to do normal header processing,

such as VXLAN, overlay tunnels, and telemetry data [35].

We enhance it for reliable message processing, including con-

gestion control, and have programmed it to implement the

NDP [24] and Homa [42] low-latency message protocols.

Network operators can program custom message protocols

tailored to their specific workloads.

Low-latency, message-oriented transport protocols are well-

suited to hardware, compared to connection-oriented, reliable

byte-stream protocols such as TCP. The NIC only needs to

maintain a small amount of state for partially delivered mes-

sages. For example, our NDP implementation, beyond storing

the actual message, keeps a per-message bitmap of received

packets, and a few bytes for congestion control. This allows

our design to be limited only by the number of outstand-

ing messages, rather than the number of open connections,

allowing large scale, highly-distributed applications across

thousands of servers.

The transport layer (Figure 1) contains buffers to convert

between the unreliable IP datagram domain and the reliable

message domain. Outbound messages pass through a packeti-

zation buffer to split them into datagrams, which may need

to be retransmitted out of order due to drops in the network.

Inbound datagrams are placed into a reassembly buffer, re-

ordering them as needed to prepare them for delivery to a

CPU core.

Selecting a CPU core. If the NIC randomly sends messages

to cores, some messages will inevitably sit in a queue waiting

for a busy core while another core sits idle. Our NIC therefore

implements a core-selection algorithm in hardware. Inspired

by NeBuLa [57], our NIC load balances nanoRequest mes-

sages across cores using the Join-Bounded-Shortest-Queue

or JBSQ(n) algorithm [36].

JBSQ(n) approximates an ideal, work-conserving single

queue policy using a combination of a single central queue,

and short bounded queues at each core, with a maximum

depth of n messages. The centralized queue replenishes the

shortest per-core queues first. JBSQ(1) is equivalent to the

theoretically ideal single-queue model, but is impractical to

implement efficiently at these speeds.

Our nanoPU prototype implements a JBSQ(2) load bal-

ancer in hardware per application. The NIC is connected to

each core using dedicated wires, and the RX FIFOs on each

core have space for at least two messages per thread running

on the core. We chose JBSQ(2) based on the communication

latency between the NIC and the cores as well as the available

memory bandwidth for the centralized queues. We evaluate

its performance in Section 5.2.3.

3 Our nanoPU Implementation

We designed a prototype quad-core nanoPU based on the

open-source RISC-V Rocket core [54]. A block diagram of

our prototype is shown in Figure 2.

Our prototype extends the open-source RISC-V Rocket-

Chip SoC generator [3], adding 4,300 lines of Chisel [6]

to the code base. The Rocket core is a simple five-stage,

in-order, single-issue processor. We use the default Rocket

core configuration: 16KB L1 instruction and data caches,

a 512KB shared L2 cache, and 16GB of external DRAM

memory. Everything shown in Figure 2, except the MAC and

Serial IO, is included in our prototype and is available as

an open-source, reproducible artifact.5 Our prototype does

not include the traditional DMA path between the NIC and

memory hierarchy. Instead, we focus our efforts on building

the nanoPU fast path for nanoRequests.

To improve simulation speed, we do not run a full operat-

ing system on our prototype, but rather just enough to boot

the system, initialize one or more threads on the cores, and

perform context switches between threads when instructed to

do so by the hardware thread scheduler (HTS). In total, this

consists of about 1,200 lines of C code and RISC-V assembly

instructions. All applications run as bare-metal applications

linked with the C standard library.

The nanoPU design is intended to be fabricated as an ASIC,

but we use an FPGA to build the initial prototype. As we

will discuss further in Section 5, our prototype runs on AWS

F1 FPGA instances, using the Firesim [31] framework. Our

prototype adds about 15% more logic LUTs to an otherwise

unmodified RISC-V Rocket core with a traditional DMA NIC.

3.1 RISC-V Register File Network Interface

The RISC-V Rocket core required surprisingly few changes

to add the nanoPU register file network interface. The main

change, naturally, involves the register file read-write logic.

Each core has 32 GPRs, each 64-bits wide, and we reserve two

for network communication (shared by all threads). Applica-

tions must be compiled to avoid using the reserved GPRs for

5nanoPU Artifact: https://github.com/l-nic/chipyard/wiki
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Figure 2: Our nanoPU prototype latency breakdown. Total wire-to-wire latency for an 8B message (72B packet) is 69ns.

temporary storage. Fortunately, gcc makes it easy to reserve

registers via command-line options [48].

The core also required changes to the control logic that

handles pipeline flushes. A pipeline flush can occur for a

number of reasons (e.g., a branch misprediction). On a tradi-

tional five-stage RISC-V Rocket core, architectural state is

not modified until an instruction reaches the write-back stage

(Rocket Stage 5). However, with the addition of our network

register file interface, reading netRX now causes a state mod-

ification (FIFO read) in the decode stage (Rocket Stage 2).

The destructive read operation must be undone when there is

a pipeline flush. The CPU pipeline depth is an upper bound

on how many read operations need to be undone; in our case,

at most two reads require undoing. It is straightforward to

implement a FIFO queue supporting this operation.

3.2 Bounded Thread Scheduling in Hardware

The nanoPU core implements thread scheduling in hardware,

as described in Section 2.2. The number of threads that can

run on each core is primarily determined by the amount of

buffering available for the local RX/TX queues. In order to

implement the JBSQ(2) core selection policy, as described

in Section 2.3, the local RX queue for each thread must be

able to hold at least two maximum size messages. We use a

maximum message size of 2KB (two packets)6 and allocate

16KB of buffer for the local RX queues. Therefore, the pro-

totype supports up to four threads on each core; each thread

can be configured with a unique priority value. Priority 0 has

a configurable maximum message processing time in order to

implement the bounded priority thread scheduling policy. We

added a new thread-scheduling interrupt to the RISC-V core,

along with an accompanying control & status register (CSR)

set by HTS to tell the interrupt’s trap handler which thread it

should run next. When processing nanoRequests, we disable

all other interrupts to avoid unnecessary interrupt handling

6The maximum message size is a configurable parameter of the architec-

ture and we have experimented with messages as long as 38 packets.

overheads.

We define the context-switch latency to be the time from

when the scheduler fires the interrupt to when the first in-

struction of the target thread is executed. Our prototype has a

measured context-switch latency of 160 cycles, or 50ns on a

3.2GHz CPU. This is much faster than a typical Linux con-

text switch, partly because the thread scheduling decision is

offloaded to hardware, and partly because the core only runs

bare-metal applications in the same address space with the

highest privilege mode. Therefore, nanoPU hardware thread

scheduling in a Linux environment would be less efficient

than our bare-metal prototype.

3.3 Prototype NIC Pipeline

The NIC portion of the nanoPU fast path consists of the pro-

grammable transport module and the core selection module.

Our prototype implements both.

Transport hardware. We configured our programmable

transport module to implement NDP [24] entirely in hardware.

We chose NDP because it has promising low-latency perfor-

mance, and is well-suited to handle small RPC messages (the

class of messages we are most interested in accelerating, i.e.,

nanoRequests). However, the nanoPU does not depend on

NDP. As explained in Section 2.3, our NIC transport layer

is programmable. It has already been shown to support sev-

eral other protocols, including Homa [42]. We evaluate our

hardware NDP implementation in Section 5.2.3.

JBSQ hardware. As explained in Section 2.3, our NIC im-

plements JBSQ(2) [36] to load balance messages across cores

on a per-application basis. JBSQ(2) is implemented using

two tables. The first maps the message’s destination layer-4

port number to a per-core bitmap, indicating whether or not

each core is running a thread bound to the port number. The

second maps the layer-4 port number to a count of how many

messages are outstanding at each core for the given port num-

ber. When a new message arrives, the algorithm checks if

any of the cores that are running an application thread bound

7



to the destination port are holding fewer than two of the ap-

plication’s messages. If so, it will immediately forward the

message to the core with the smallest message count. If all

target cores are holding two or more messages for this port

number, the algorithm waits until one of the cores indicates

that it has finished processing a message for the destination

port. It then forwards the next message to that core. We evalu-

ate our JBSQ implementation in Section 5.2.3.

3.4 The nanoPU HW/SW Interface

To illustrate how software on the nanoPU core interacts with

the hardware, Listing 1 shows a simple bare-metal loopback-

with-increment program in RISC-V assembly. The program

continuously reads 16B messages (two 8B integers) from

the network, increments the integers, and sends the messages

back to their sender. The program details are described below.

The entry procedure binds the thread to a layer-4 port

number at the given priority level by first writing a value to

both the lcurport and lcurpriority CSRs, then writing

the value 1 to the lniccmd CSR. The lniccmd CSR is a bit-

vector used by software to send commands to the networking

hardware; in this case, it is used to tell the hardware to allocate

RX/TX queues both in the core and the NIC for port 0 with

priority 0. The lniccmd CSR can also be used to unbind a

port or to update the priority level.

The wait_msg procedure waits for a message to arrive in

the core’s local RX queue by polling the lmsgsrdy CSR until

it is set by the hardware.7 While it is waiting, the application

tells HTS that it is idle by writing to the lidle CSR during the

polling loop. The scheduler uses the idle signal to evict idle

threads in order to schedule a new thread that has messages

waiting to be processed.

The loopback_plus1_16B procedure simply swaps the

source and destination addresses by moving the RX appli-

cation header (the first word of every received message, see

Section 2.1) from the netRX register to the netTX register,

shown on line 19 (Listing 1), and thus the RX application

header becomes the TX application header.8 Upon writing

the TX application header, the hardware ensures that there

is sufficient buffer space for the entire message; otherwise,

it generates an exception which should be handled by the

application accordingly. The procedure then increments ev-

ery integer in the received message and appends them to the

message being transmitted. After the procedure has finished

processing the message, it tells HTS it is done by writing to

the lmsgdone CSR. The scheduler uses this write signal to:

(1) reset the message processing timer for the thread, and (2)

tell the NIC to dispatch the next message for this application

7It is the responsibility of the application to ensure that it does not try to

read netRX when the local RX queue is empty; doing so results in undefined

behavior.
8Note that this instruction also sets the TX message length to be equal to

the RX message length because the message length is included in the TX/RX

application headers.

1 // Simple loopback & increment application

2 entry:

3 // Register port number & priority with NIC

4 csrwi lcurport , 0

5 csrwi lcurpriority , 0

6 csrwi lniccmd , 1

7

8 // Wait for a message to arrive

9 wait_msg:

10 csrr a5, lmsgsrdy

11 bnez a5, loopback_plus1_16B

12 idle:

13 csrwi lidle , 1 // app is idle

14 csrr a5, lmsgsrdy

15 beqz a5, idle

16

17 // Loopback and increment 16B message

18 loopback_plus1_16B:

19 mv netTX , netRX // copy app hdr: rx to tx

20 addi netTX , netRX , 1 // send word one + 1

21 addi netTX , netRX , 1 // send word two + 1

22 csrwi lmsgdone , 1 // msg processing done

23 j wait_msg // wait for the next message

Listing 1: Loopback with increment. A nanoPU

assembly program that waits for a 16B message,

increments each word, and returns it to the sender.

to the core.9 Finally, the procedure waits for the next message

to arrive.

3.5 How It All Fits Together

Next, we walk through a more representative nanoRequest

processing application, written in C, to compute the dot

product of a vector stored in memory and a vector con-

tained in arriving RPC request messages. Listing 2 is the

C code for the routine, based on a small library of C macros

(lnic_*) we wrote to allow applications to interact with the

nanoPU hardware (netRX and netTX GPRs, and the CSRs).

The lnic_wait() macro corresponds to the wait_msg pro-

cedure on lines 9-15 in Listing 1. The lnic_read() and

lnic_write_*() macros generate instructions that either

read from or write to netRX or netTX using either registers,

memory, or an immediate; and the lnic_msg_done() macro

writes to the lmsgdone CSR, corresponding to line 22 of List-

ing 1. Our library also includes other macros as well such as

lnic_branch() which branches control flow based on the

value in netRX.

The dot product C application waits for a message to arrive

then extracts the application header (the first word of every

message), followed by the message type in the second word.

It checks that it is a DATA_TYPE message, and reads the third

word to know how many 8B words the vector contains. The

vector identifies the in-memory weight to use for each word

9A future implementation may also want to use this signal to flush any

unread bytes of the current message from the local RX queue. Doing so

would guarantee that the next read to netRX would yield the application

header of the subsequent message and help prevent application logic from

becoming desynchronized with message boundaries.
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1 while (1) {

2 // Wait for a msg to arrive

3 lnic_wait();

4 // Extract application header from RX msg

and check msg type

5 app_hdr = lnic_read();

6 if (lnic_read() != DATA_TYPE) {

7 printf("Expected Data msg.\n");

8 return -1;

9 }

10 // Compute the dot product of the msg

vector with in-memory data

11 uint64_t num_words = lnic_read();

12 uint64_t result = 0;

13 for (i = 0; i < num_words; i++) {

14 uint64_t idx = lnic_read();

15 uint64_t word = lnic_read();

16 result += word * weights[idx];

17 }

18 // Send response message

19 lnic_write_r((app_hdr & (IP_MASK |

PORT_MASK)) | RESP_MSG_LEN);

20 lnic_write_i(RESP_TYPE);

21 lnic_write_r(result);

22 lnic_msg_done();

23 }

Listing 2: Example nanoPU application that

computes the dot product between a vector in a

network message and in-memory weights.

when computing the dot product. Note that the application

processes message data directly out of the register file and

message data never needs to be copied into memory, allowing

it to run faster than on a traditional system. Finally, the appli-

cation sends a response message back to the sender containing

the dot product.

4 The nanoPU Applications

Applications that will benefit most from using the nanoPU

fast path exhibit one or both of the following characteristics:

(i) strict tail response time requirements for network mes-

sages; or (ii) short (µs-scale) on-core service times. It should

come as no surprise that applications with strict tail response

time requirements will benefit from using the nanoPU fast

path. Enabling low tail response time was one of our primary

goals that guided many of the design decisions described in

Section 2. For the latter, when an application’s on-core ser-

vice time is short, any CPU cycles spent sending or receiving

network messages become comparatively more expensive.

The nanoPU’s extremely low per-message overheads help to

ensure that these applications are able to dedicate close to

100% of CPU cycles to performing useful processing and thus

achieve their maximum possible message processing through-

put. Furthermore, the nanoPU can also help to reduce on-core

service times by reducing pressure on the cache-hierarchy

and allowing message data to be processed directly out of the

register file. Another consequence of having short on-core

service times is that the end-to-end completion time of each

RPC becomes dominated by communication latency. By mov-

ing the entire network stack into hardware and by using the

register file interface, the nanoPU fast path efficiently reduces

communication latency and, hence, the RPC completion time.

Therefore, the relative benefit provided by the nanoPU will

increase as on-core service time decreases. An application’s

on-core service time does not necessarily need to be sub-1µs

in order to benefit from using the nanoPU. The following

section describes a few specific classes of applications that

we believe are well-suited for the nanoPU.

4.1 Example Application Classes

µs-scale (or ns-scale) Services. An increasing number of

datacenter applications are implemented as a collection of

independent software modules called microservices. It is com-

mon for a single user request to invoke microservices across

thousands of servers. At such large scale, the tail RPC re-

sponse time dominates the end-to-end performance of these

applications [17]. Furthermore, many microservices exhibit

very short on-core service times; a key-value store is one such

example that has sub-1µs service time. Therefore, these ap-

plications exhibit both of the characteristics described in the

previous section and are ideal candidates to accelerate with

the nanoPU.

Programmable One-sided RDMA. Modern NICs support

RDMA for quick read and write access to remote mem-

ory. Some NICs support further “one-sided” operations in

hardware: a single RDMA request leads to very low latency

compare-and-swap, or fetch-and-add. It is natural to consider

extending the set of one-sided operations to further acceler-

ate remote memory operations [40, 55], for example indirect

read (dereferencing a memory pointer in one round-trip time,

rather than two), scan and read (scan a small memory re-

gion to match an argument and fetch data from a pointer

associated with the match), return max, and so on. Changing

fixed-function NIC hardware requires a new hardware design

and fork-lift upgrade, and so, instead, Google Snap [40] im-

plements a suite of custom one-sided operations in software

in the kernel. This idea would run much faster on the nanoPU,

for example as an embedded core on a NIC, and could im-

plement arbitrary one-sided RDMA operations in software

(Section 5.3).

High Performance Computing (HPC) and Flash Bursts.

HPC workloads (e.g., N-body simulations [34]) as well as

flash bursts [37], a new class of data center applications that

utilize hundreds or thousands of machines for a short amount

of time (e.g., one millisecond), are both examples of highly

parallelizable application classes that are partitioned into fine-

grained tasks distributed across many machines. These appli-

cations tend to be very communication intensive and spend

a significant amount of time sending and receiving small

messages [37]. We believe that the nanoPU’s extremely low

per-message overheads and low communication latency can

help to accelerate these applications.
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Network Function Virtualization (NFV). NFV is a well-

known class of applications with µs-scale on-core service

times [60, 66]. The nanoPU’s low per-message overhead, reg-

ister file interface, and programmable PISA pipelines allow

it to excel at stream processing network data and thus is an

excellent platform for deploying NFV applications.

5 Evaluation

Our evaluations address the following four questions:

1. How does the performance of the nanoPU register file

interface compare to a traditional DMA-based network

interface (Section 5.2.1)?

2. Is the hardware thread scheduler (HTS) able to provide

low tail latency under high load and bounded tail latency

for well-behaved applications (Section 5.2.2)?

3. How does our prototype NIC pipeline (i.e., transport and

core selection) perform under high incast and service-time

variance (Section 5.2.3)?

4. How do real applications perform using the nanoRequest

fast path (Section 5.3)?

5.1 Methodology

We compare our nanoPU prototype against an unmodified

RISC-V Rocket core with a standard NIC (IceNIC [31]),

which we call a traditional NIC. The traditional NIC is imple-

mented in the same simulation environment as our nanoPU

prototype and performs DMA operations directly with the

last-level (L2) cache. The traditional NIC does not support

hardware-terminated transport or multi-core network applica-

tions, however, an ideal traditional NIC would support both

of these. Therefore, for our evaluations, we do not implement

transport in software for the traditional NIC baseline; we omit

the overhead that would be introduced by this logic.

Our evaluations ignore the overheads of translating ad-

dresses because we run bare-metal applications using phys-

ical addresses. When using virtual memory, the traditional

design would perform worse than reported here, because the

message buffer descriptors would need to be translated result-

ing in additional latency, and more TLB misses. There is no

need to translate addresses when processing nanoRequests

from the register file.

Benchmark tools. We use two different cycle-accurate sim-

ulation tools to perform our evaluations: (1) the Verila-

tor [63] software simulator, and (2) the Firesim [31] FPGA-

accelerated simulator. Firesim enables us to run large-scale,

cycle-accurate simulations with hundreds of nanoPU cores

using FPGAs in AWS F1 [1]. The FPGAs run at 90MHz,

and we simulate a target clock rate of 3.2GHz—all reported

results are in terms of this target clock rate. The simulated

servers are connected by C++ switch models running on the

AWS x86 host CPUs.

5.2 Microbenchmarks

5.2.1 Register file interface

Loopback response time. Figure 2 shows a breakdown of the

latency through each component for a single 8B nanoRequest

message (in a 72B packet) measured from the Ethernet wire

through a simple loopback application in the core, then back to

the wire (first bit in to last bit out).10 As shown, the loopback

response time through the nanoPU fast path is only 17ns, but

in practice we also need an Ethernet MAC and serial I/O,

leading to a wire-to-wire response time of 69ns.

For comparison, Figure 3 shows the median loopback re-

sponse time for both the nanoPU fast path and the traditional

design for different messages sizes. For an 8B nanoRequest,

the traditional design has a 51ns loopback response time, or

about 3× higher than the nanoPU. 12ns (of the 51ns) are

spent performing memcpy’s to swap the Ethernet source and

destination addresses, something that is unnecessary for the

nanoPU, because it is handled by the NIC hardware. The

speedup of the nanoPU fast path decreases as the message

size increases because the response time becomes dominated

by store-and-forward delays and message-serialization time.

If instead the traditional NIC placed arriving messages di-

rectly in the L1 cache, as NeBuLa proposes [57], the loopback

response time would be faster, but the nanoPU fast path would

still have 50% lower response time for small nanoRequests.

Loopback throughput. Figure 4 shows the throughput of

the simple loopback application running on a single core

for both the nanoPU fast path and the traditional NIC. The

traditional NIC processes batches of 30 packets, which fit

comfortably in the LLC. Batching allows the traditional NIC

to overlap computation (e.g., Ethernet address swapping) with

NIC DMA send/receive operations.

Throughput is dominated by the software overhead to pro-

cess each message. For the register file interface, the software

overhead is: read the lmsgsrdy CSR to check if a message

is available for processing, read the message length from

the application header, and write to the lmsgdone CSR after

forwarding the message. For the traditional design, the soft-

ware overhead is: perform MMIO operations to pass RX/TX

descriptors to the NIC and to check for RX/TX DMA com-

pletions, and memcpy’s to swap the Ethernet source and desti-

nation addresses.

Because of lower overheads, the application has 2–7×
higher throughput on the nanoPU than on the traditional NIC.

For small 8B messages (72B packets), the nanoPU loopback

application achieves 68Gb/s, or 118Mrps – 7× higher than the

traditional system. For 1KB messages, the nanoPU achieves

a throughput of 166Gb/s (83% of the line-rate). When we add

the per-packet NDP control packets sent/received by the NIC,

the 200Gb/s link is completely saturated.

10Our prototype does not include MAC & Serial IO, so we add real values

measured on a 100GE switch (with Forward Error Correction disabled).
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Figure 3: Loopback median re-

sponse time vs. message length;

nanoPU fast path and traditional.

Figure 4: Loopback throughput vs.

message length; nanoPU fast path

and traditional.

Figure 5: Loopback-with-increment

throughput vs. message length;

nanoPU fast path and traditional.

Figure 6: Dot-product throughput

speedup for various vector sizes;

nanoPU fast path (naive & optimal)

relative to traditional NIC.

Figure 7: 99th %ile response time

vs load; hardware thread sched-

uler (HTS) vs. traditional timer-

interrupt driven scheduler (TIS).

Figure 8: 99th %ile response time

vs load for well-behaved and mis-

behaved threads, with and without

bounded message processing time.

Stateless nanoRequest jobs. The nanoPU is well-suited for

compute-intensive applications that transform the data carried

by self-contained nanoRequests. We use a very simple bench-

mark application that increments each word of the message by

one and forwards the message back into the network; similar

to the program described in Section 3.4.

Figure 5 shows that the nanoPU accelerates the throughput

of this application by up to 10×. NanoRequest data is read

from the register file and passed directly through the ALU;

no memory operations are required at all. On the other hand,

when using the traditional NIC, each word of the message

must be read from the last-level cache (LLC), passed through

the ALU, and the final result is written back to memory. If

instead the traditional NIC loaded words into the L1 cache, as

in [57], we estimate a throughput about 1.3× faster than via

the LLC. This would still be 7.5× slower than the nanoPU fast

path. In Section 5.3, we will compare more realistic bench-

marks for real applications.

Stateful nanoRequest jobs. These are applications that pro-

cess both message data and local memory data. Similar to the

example described in Section 3.5, our simple microbenchmark

computes the dot product of two vectors of 64-bit integers,

one from the arriving message and a weight vector in local

memory. The weight vector is randomly chosen from enough

vectors to fill the L1 cache (16kB).

There are two ways to implement the application on the

nanoPU. The optimal method is to process each message

word directly from the register file, multiplying and accumu-

lating each word with the corresponding weight value from

memory. The naive method copies the entire message from

netRX into memory before computing the dot product with

the weight vector. The traditional design processes messages

in batches of 30, to overlap dot-product computation with

DMA operations.

Figure 6 shows the throughput speedup of the optimal

and naive methods relative to the traditional application, for

different message lengths.

• Small messages: For small messages below 100bytes, the

nanoPU is 4–5× faster because of fewer per-message soft-

ware overheads.

• Large messages: For large vectors throughput is limited by

the longer dot product computation time. The optimal appli-

cation consistently doubles throughput by keeping message

data out of the L1 cache and reducing cache misses. The

naive application is slowed by the extra copy, and about

twice as many L1 data cache misses. The traditional appli-

cation has 10× as many L1 data cache misses as optimal

because message data must be fetched from the LLC, which

pollutes the L1 cache, evicting weight data. If we speed up

the traditional NIC by placing message data directly in the

L1 cache, as NeBuLa proposes [57], we estimate the tra-

ditional design would run 1.5× faster for large messages.

Optimal would still be 30% faster for large messages.

The benefits are clear when an application processes mes-

sage data directly from the netRX register. While this may

seem like a big constraint, we have found that it is gener-

ally feasible and natural to design applications this way. We

demonstrate example applications in Section 5.3.

5.2.2 Hardware thread scheduling

Next, we evaluate how much the hardware thread scheduler

(HTS) can reduce tail response time under high load.
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Methodology. We evaluate tail response time under load by

connecting a custom (C++) load generator to our nanoPU

prototype in Firesim [31]. It generates nanoRequests with

Poisson inter-arrival times, and measures the end-to-end re-

sponse time.

Priority thread scheduling. We compare our hardware

thread scheduler (HTS) against a more traditional timer-

interrupt driven scheduler (TIS) interrupted by the kernel

every 5µs to swap in the highest-priority active thread. We

run both schedulers in hardware on our prototype.11 TIS uses

a 5µs timer interrupt to match the granularity of state-of-the-

art low-latency operating systems [27, 49].

We evaluate both schedulers when they are scheduling two

threads: one with priority 0 (high) and one with priority 1

(low). The load generator issues 10K requests for each thread,

randomly interleaved, each with an on-core service time of

500ns (i.e., an ideal system will process 2Mrps).

Figure 7 shows the 99th %ile tail response time vs load for

both thread scheduling policies, with a high and low priority

thread. HTS reduces tail response time by 4× and 6.5× at

high and low load, respectively; and can sustain 96% load.12

Bounded message-processing time. HTS is designed to

bound the tail response time of well-behaved applications,

even when they are sharing a core with misbehaving applica-

tions. To test this, we configure a core to run a well-behaved

thread and a misbehaving thread, both configured to run at

priority 0. All requests have an on-core service time of 500ns,

except when a thread misbehaves (once every 100 requests),

in which case the request processing time increases to 5µs.

Figure 8 shows the 99th %ile tail response time vs load

for both threads with, and without, the bounded message pro-

cessing time feature enabled. When enabled, if a priority 0

thread takes longer than 1µs to process a request, HTS lowers

its priority to 1. When disabled, all requests are processed by

the core in FIFO order.

We expect an application with at most one message at a

time in the RX queue, to have a tail response time bounded by

2 · 43ns+ 17ns+ 2 · 1000ns+ 50ns = 2.15µs. This matches

our experiments: With the feature enabled, the tail response

time of the well-behaved thread never exceeds 2.1µs, until the

offered load on the system exceeds 100% (1.9 Mrps).13 HTS

lowers the priority of the misbehaving application the first

time it takes longer than 1µs to process a request. Hence, the

well-behaved thread quickly becomes strictly higher priority

and its 500ns requests are never trapped behind a long 5µs

one. Note also that by bounding message processing times,

shorter requests are processed first, queues are smaller and

11TIS would run in software in practice, likely on a separate core, and

would therefore be slower than in hardware.
12Our prototype does not currently allocate NIC buffer space per-

application, causing high-priority requests to be dropped when the low-

priority queue is fill. This will be fixed in the next version.
13This is despite our Poisson arrival process occasionally placing more

than one message in the RX queue.

the system can sustain higher load.

5.2.3 Prototype NIC pipeline

Hardware NDP transport. We verify our hardware NDP

implementation by running a large 80-to-1 incast experiment

on Firesim, with 324 cores simulated on 81 AWS F1 FPGAs.

All hosts are connected to one simulated switch; 80 clients

send a single packet message to the same server at the same

time. The switch has insufficient buffer capacity to store all

80 messages and hence some are dropped. When NDP is

disabled, dropped packets are detected by the sender using

a timeout and therefore the maximum latency through the

network is dictated by the timeout interval. When NDP is

enabled, the dropped messages are quickly retransmitted by

NDP’s packet trimming and NACKing mechanisms, lowering

maximum network latency by a factor of three.

Hardware JBSQ core selection. We evaluate our JBSQ im-

plementation using a bimodal service-time distribution: 99.5%

of nanoRequests have a service time of 500ns and 0.5% have

a service time of 5µs. When using a random core assignment

technique, like receive side scaling (RSS), to balance requests

across four cores, short requests occasionally get queued be-

hind long requests, resulting in high tail response time. With

JBSQ enabled, tail response time is reduced 5× at low load,

and can sustain 15% higher load than RSS.

5.3 Application Benchmarks

As shown in Table 1, we implemented and evaluated many

applications on our nanoPU prototype. Below, we present the

evaluation results for a few of these applications.

MICA. We ported the MICA key-value store [38] and com-

pared it running on the nanoPU and traditional NIC designs.

MICA is implemented as a library with an API that allows ap-

plications to GET and SET key-value pairs. Traditionally, this

API uses in-memory buffers to pass key-value pairs between

the MICA library and application code. The naive way to port

MICA to the nanoPU is to copy key-value pairs in network

messages between the register file and in-memory buffers,

using the MICA library without modification. However, we

find it more efficient to modify the MICA library to read and

write the register file directly when performing GET and SET

operations. This avoids unnecessary memcpys in the MICA

library. Optimizing the MICA library to use the register file

only required changes to 36 lines of code.

Our evaluation stores 10k key-value pairs (16B keys and

512B values). The load generator sends a 50/50 mix of read-

/write nanoRequest queries with keys picked uniformly. Fig-

ure 9 compares the 99th %ile tail response time vs load for the

traditional, nanoPU naive, and nanoPU optimized versions

of this application. The naive nanoPU implementation out-

performs the traditional implementation, likely because it is

able to use an L1-cache resident in-memory buffer rather than

an LLC-resident DMA buffer. The optimized nanoPU imple-
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Figure 9: MICA KV store: 99th %ile tail response time

for READ and WRITE requests.

Figure 10: Set intersection: 99th %ile tail response time.

mentation is able to achieve about 30% higher throughput

and lower response times by efficiently using the register file

interface when processing network messages.

Raft. Raft is a widely-used consensus algorithm for dis-

tributed applications [47]. We evaluate a production grade

version of Raft [53] using a 16B-key, 64B-value MICA key-

value store state machine, with three servers and one client

connected to a single switch. The switch has a forwarding

latency of 300ns (typical of modern cut-through commercial

switch ASICs [58]) and all links have a latency of 43ns. Al-

though our Raft cluster correctly implements leader election,

can tolerate server failure, and our client can automatically

identify a new Raft leader, we evaluate our Raft cluster in the

steady-state, failure-free case, with a single leader and three

fully-functioning replicas.

We define the response time to be from when the client

issues a three-way replicated write request to the Raft cluster,

until the client hears back from the cluster leader that the

request has been fully replicated and committed across all

three Raft servers. In 10K trials, the median response time was

3.08µs, with a 3.26µs 99th %ile tail response time. eRPC [28],

a high performance, highly-optimized RPC library reports a

5.5µs median and 6.3µs 99th %ile tail response time — about

a factor of two slower.

Set algebra. In information retrieval systems, set intersec-

tions are commonly performed for data mining, text analytics,

and search. For example, Lucene [8] uses a reverse index

that maps each word to a set of documents that contain the

word. Searches yield a document set for each search word,

then compute the intersection of these sets.

We created a reverse index of 100 Wikipedia [65] articles

with 200 common English words. Our load generator sends

search requests with 1-4 words chosen from a Zipf distribu-

tion based on word frequency. Porting the set intersection

One-sided RDMA
Latency (ns)

Median 90th %ile

Read 678 680

Write 679 686

Compare-and-Swap 687 690

Fetch-and-Add 688 692

Indirect Read 691 715

Table 2: Median and 90th %ile latency of one-sided

RDMA operations implemented on the nanoPU. Mea-

surements are made at the client, and the one-way latency

through the switch and links is 300ns.

application to the nanoPU was straight forward. The only

difference between the nanoPU and traditional versions of the

applications is the logic to send and receive network messages

(∼50 LOC). We did not need to make any modifications to

the application logic that computes the intersection between

sets of document IDs.

Figure 10 shows the tail response time for searches. The

traditional design has a low-load tail response time of 1.7µs,

compared to 1.4µs on a single nanoPU core. JBSQ helps to

ensure that long running requests do not get stuck behind

short ones. With JBSQ enabled for four cores, the 99th %ile

tail response time remains low until 7Mrps.

One-sided RDMA operations. As described in Section 4.1,

the nanoPU can implement flexible, low latency one-sided

RDMA operations. As a baseline, the median end-to-end

latency of one-sided operations between two hosts using state-

of-the-art RDMA NICs, connected by a single switch with

a port-to-port latency of 300ns is about 2µs [28]. 14 Table 2

shows the median and 90% tail latency of several one-sided

RDMA operations implemented on the nanoPU, using the

same topology as the baseline. The median latency, measured

by the nanoPU client, is 680-690ns with a 90% tail latency

of approximately 700ns, 65% lower latency than state-of-

the-art RDMA NICs. Most of the latency reduction is from

eliminating the traversal of PCIe on the client and server.

In addition to the standard one-sided RDMA operations

(read, write, compare-and-swap, fetch-and-add) we also im-

plement indirect read, in which the server simply dereferences

a pointer to determine the actual memory address to read. This

operation would require two network round trips on a standard

RDMA NIC; on the nanoPU, it takes only a few nanoseconds

longer than a standard read.

6 Discussion

nanoPU deployment possibilities. We believe there are a

number of ways to deploy nanoPU ideas, in addition to a

modified regular CPU. For example, the nanoPU fast path

14Note that when using an ARM-based smartNIC, such as the Mellanox

BlueField [41], the time to traverse the embedded cores will increase this

end-to-end latency by at least a factor of two [39, 61].
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could be added to embedded CPUs on smartNICs for the

data center [5, 41, 44]. This could be a less invasive way to

introduce nanoPU ideas without needing to modify server

CPUs. A more extreme approach would be to build a nanoPU

domain-specific architecture explicitly for nanoRequests. For

example, it would be practical today to build a single chip

512-core nanoPU, similar to Celerity [15], with one hundred

100GE interfaces, capable of servicing RPCs at up to 10Tb/s.

In-order execution. Our prototype is based on a simple 5-

stage, in-order RISC-V Rocket core and required only minor

modifications to the CPU pipeline. An out-of-order processor

would require bigger changes to ensure that words read from

netRX are delivered to the application in FIFO order.

7 Related Work

Low-latency RPCs (software). Recent work focuses on al-

gorithms to choose a core by approximating a single-queue

system using work-stealing (like ZygOS [51]) or preempting

requests at microsecond timescales (Shinjuku [27]). However,

the overheads associated with inter-core synchronization and

software preemption make these approaches too slow and

coarse-grained for nanoRequests.

eRPC [28] takes the other extreme to the nanoPU and

runs everything in software, and through clever optimizations,

achieves impressively low latency on a commodity server for

the common case. eRPC has good median response times, but

its common-case optimizations sacrifice tail response times,

which often dictate application performance. The nanoPU’s

hardware pipeline makes median and tail RPC response times

almost identical.

Low-latency RPCs (hardware). We are not the first to im-

plement core-selection algorithms in hardware. RPCvalet [12]

and NeBuLa [57] are both built on the Scale-out NUMA ar-

chitecture [46]. RPCvalet implements a single queue system,

which in theory provides optimal performance. However, it

ran into memory bandwidth contention issues, which they

later resolve in NeBuLa. Both NeBuLa and R2P2 [36] imple-

ment the JBSQ load balancing policy; NeBuLa runs JBSQ

on the server whereas R2P2 runs JBSQ in a programmable

switch. Like NeBuLa, the nanoPU also implements JBSQ to

steer requests to cores.

Many NICs support RDMA in hardware. Several systems

(HERD [29], FaSST [30], and DrTM+R [11]) exploit RDMA

to build applications on top. As described in Sections 4.1 and

5.3, the nanoPU can be used to implement programmable

one-sided RDMA operations while providing lower latency

than state-of-the-art commercial NICs.

SmartNICs (NICs with CPUs on them) [5,41,44] are being

deployed to offload infrastructure software from the main

server to CPUs on the NIC. However, these may actually

increase the RPC latency, unless they adopt nanoPU-like de-

signs on the NIC.

Transport protocols in hardware. We are not the first to

implement the transport layer and congestion control in hard-

ware. Modern NICs that support RDMA over Converged

Ethernet (RoCE) implement DCQCN [67] in hardware. In the

academic research community, Tonic [2] proposes a frame-

work for implementing congestion control in hardware. The

nanoPU’s programmable transport layer (and NDP implemen-

tation) draws upon ideas in Tonic.

Register file interface. GPRs were first used by the J-

machine [13] for low-latency inter-core communication on

the same machine, but were abandoned because of the diffi-

culty implementing thread-safety. The idea has reappeared in

several designs, including the RAW processor [64], and the

SNAP processor for low-power sensor networks [32].

8 Conclusion

Today’s CPUs are optimized for load-store operations to and

from memory. Memory data is treated as a first-class citizen.

But modern workloads frequently process huge numbers of

small RPCs. Rather than burden RPC messages with travers-

ing a hierarchy optimized for data sitting in memory, we

propose providing them with a new optimized fast path, in-

serting them directly into the heart of the CPU, bypassing

the unnecessary complications of caches, PCIe and address

translation. Hence, we aim to elevate network data to the same

importance as memory data.

As datacenter applications continue to scale out, with one

request fanning out to generate many more, we must find ways

to minimize not only the communication overhead, but also

the tail response time. Long tail response times are inherently

caused by resource contention (e.g., shared CPU cores, cache

space, and memory and network bandwidths). By moving key

scheduling decisions into hardware (i.e., congestion control,

core selection, and thread scheduling), these resources can

be scheduled extremely efficiently and predictably, leading to

lower tail response times.

If future cloud providers can provide bounded, end-to-end

RPC response times for very small nanoRequests, on shared

servers also carrying regular workloads, we will likely see

much bigger distributed applications based on finer grain

parallelism. Our work helps to address part of the problem:

bounding the RPC response time once the request arrives at

the NIC. If coupled with efforts to bound network latency, it

might complete the end-to-end story. We hope our results will

encourage other researchers to push these ideas further.
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