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ABSTRACT

In this paper, we explore how programmable data planes can nat-

urally provide a higher-level of service to user applications via a

new abstraction called packet subscriptions. Packet subscriptions

generalize forwarding rules, and can be used to express both tra-

ditional routing and more esoteric, content-based approaches. We

present strategies for routing with packet subscriptions in which

a centralized controller has a global view of the network, and the

network topology is organized as a hierarchical structure. We also

describe a compiler for packet subscriptions that uses a novel BDD-

based algorithm to efficiently translate predicates into P4 tables that

can support O(100K) expressions. Using our system, we have built

three diverse applications. We show that these applications can be

deployed in brownfield networks while performing line-rate message

processing, using the full switch bandwidth of 6.5Tbps.
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1 INTRODUCTION

The advent of programmable data planes [6, 7, 53] is having a pro-

found impact on networking, with clear benefits to network operators

(e.g., increased visibility via fine-grained network telemetry) and

to switch vendors (e.g., software development is faster and less

expensive than hardware development). However, the benefits to

users are still relatively unexplored, in the sense that today’s pro-

grammable data planes offer the same forwarding abstractions that

fixed-function devices have always provided—e.g., match on IP

address, decrement TTL, and send to the next hop.

While the Internet is based on a well-motivated design [16], clas-

sic protocols such as TCP/IP provide a lower level of abstraction
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than modern distributed applications expect, especially in networks

managed by a single entity, such as data centers. As a case in point,

today it is common to deploy services in lightweight containers.

Address-based routing for containerized services is difficult, because

containers deployed on the same host may share an address, and

because containers may move, causing its address to change. To cope

with these networking challenges, operators are deploying identifier-

based routing, such as Identifier Locator Addressing (ILA) [34].

These schemes require that name resolution be performed as an

intermediate step. Another example is load balancing: to improve

application performance and reduce server load, data centers rely on

complex software systems to map incoming IP packets to one of a

set of possible service end-points. Today, this service layer is largely

provided by dedicated middleboxes. Examples include Google’s Ma-

glev [18] and Facebook’s Katran [46]. A third example occurs in big

data processing systems, which typically rely on message-oriented

middleware, such as TIBCO Rendezvous [50], Apache Kafka [32],

or IBM’s MQ [24]. This middleware allows for a greater decoupling

of distributed components, which in turn helps with fault tolerance

and elastic scaling of services [19].

Although the current approach provides the necessary

functionality—the middleboxes and middleware abstracts away

the address-based communication fabric from the application—the

impedance mismatch between the abstraction that networks offer

and the abstraction that applications need adds complexity to the

network infrastructure. Using middleboxes to implement this higher-

level of network service limits performance, in terms of throughput

and latency, as servers process traffic at gigabits per second, while

ASICs can process traffic at terabits per second. Moreover, middle-

boxes increase operational costs and are a frequent source of network

failures [44, 45]. Given the existence of programmable devices, can’t

we do better?

In this paper, we propose a new network abstraction called packet

subscriptions. A packet subscription is a stateful predicate that, when

evaluated on an input packet, determines a forwarding decision.

Packet subscriptions generalize traditional forwarding rules; they

are more expressive than basic equality or prefix matching and they

can be written on arbitrary, user-defined packet formats. A packet

subscription compiler generates both the data plane configuration

and the control plane rules, providing a uniform interface for pro-

gramming the network. Packet subscriptions easily express a range

of higher-level network services, including pub/sub [19], in-network

caching [29, 35], and identifier-based routing [34].

In some respects, packet subscriptions share a similar motiva-

tion to prior work on content-centric networking [11, 26, 31, 42].

However, in contrast to this prior work, we are not proposing a

complete re-design of the Internet [20, 42]. Instead, we argue that

https://doi.org/10.1145/3386367.3431315
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higher-level network abstractions are already used extensively by

distributed applications, and this functionality can be naturally pro-

vided by the network data plane. Moreover, packet subscriptions can

be implemented efficiently in controlled, data center deployments,

in which the entire network is in a single administrative domain, and

operators have the freedom to directly tailor the network to the needs

of the applications. Packet subscriptions interoperate with other

routing schemes (e.g. IP), so they are also suitable for brownfield

deployments.

Furthermore, although security is an important concern for any

network design, the controlled data center setting mitigates some

of the most pressing security issues. Moreover, it is reasonable to

assume that for applications that utilize a publish/subscribe style of

communication, the data is public.

Supporting packet subscriptions as a network-level service re-

quires addressing a series of challenges. At the network-wide level,

the challenge is routing. Analogous to IP, routing on packet subscrip-

tions amounts to placing and possibly combining rules throughout

the network so as to induce the right flows of packets from publishers

to subscribers. At the switch-local level, the main problem is for-

warding, meaning efficiently matching packets against a set of local

rules. Also at the switch-local level, there are technical challenges in

efficiently parsing structured packets and allocating switch memory.

To address these challenges, we have designed a new network

architecture, named Camus. Applications provide Camus with filters

written in a packet subscription language. Camus provides a con-

troller component that determines a global routing policy based on

the subscriptions, and a compiler component that generates the con-

trol and data plane configurations for the local forwarding decisions

that collectively realize the routing strategy.

At the routing level, Camus offers two different routing strate-

gies. One strategy reduces the number of forwarding rules stored

in switches at the expense of routing all traffic through the network

core. The second strategy makes the opposite trade-off; it avoids

sending traffic through the core, at the expense of greater storage

requirements. Both strategies assumes a data-center network deploy-

ment, in which a centralized controller has a global view of the

network, and the network topology is organized as a hierarchical

structure, such as a Fat Tree or Clos architecture.

With respect to forwarding, naïvely translating packet subscrip-

tions into FIB entries would require significant amounts of TCAM

and SRAM memory, which is a scarce resource on network hard-

ware. Instead, Camus uses an algorithm based on Binary Decision

Diagrams (BDDs) [1, 9]. The Camus compiler translates logical

predicates into P4 tables that can support O(100k) filter expressions

within the limited resources of a programmable switch ASIC. More-

over, Camus provides functionality for parsing application-specific

message formats, which requires reading deeply into the packet, and

processing messages that have been batched together into a single

network packet.

We have used Camus to provide communication for three applica-

tions: a financial application for filtering market feeds (i.e., the ITCH

protocol provided by NASDAQ); video streaming services using

Cisco’s hybrid ICN (hICN) [15]; and in-band network telemetry

(INT) event detection. This diversity of applications demonstrates

the flexibility and expressiveness of Camus. Moreover, our prototype

demonstrates substantial improvements in throughput over software

based alternatives, while processing messages at line-rate.

Overall, this paper makes the following contributions:

• It introduces a high-level design of a packet subscription language

targeting programmable ASICs (§2).

• It demonstrates a strategy to route via packet subscriptions in a

hierarchical network topology.(§4).

• It presents an algorithm to efficiently compile packet subscription

to P4 tables and control plane rules (§5).

• It describes techniques for parsing batches of application-level

messages deep inside a packet (§6).

• It experimentally evaluates an implementation of in-network pub/-

sub using packet subscriptions against software based alternatives

(§7).

2 PACKET SUBSCRIPTIONS

A packet subscription is a filter that determines whether a packet

is of interest, and therefore whether it should be forwarded to an

application. So, when end-points submit a packet subscription to the

global controller, they are effectively saying “send me the packets

that match this filter”. The following is an example of a stateless

filter:

ip.dst == 192.168.0.1

It indicates that packets with the IP destination address

192.168.0.1 should be forwarded to the end-point that submitted

this filter.

One can interpret this filter the traditional way: each host is as-

signed an IP address, and the switches forward packets toward their

destinations. However, in this traditional interpretation, the network

is responsible for assigning IP addresses to end-points. Instead, with

packet subscriptions it is the application that assigns IP addresses.

In other words, packet subscriptions empower applications with the

ability to define the routing structure for the network.

Another interpretation is that the subscription is equivalent to

joining a multicast group with a given IP address. However, with

packet subscriptions, the IP address has no particular global meaning,

and instead it is just another attribute of the packet. Applications can

use other attributes for routing, and in particular they can express

their interests by combining multiple conditions on one or more

attributes.

For example, suppose that a trading application is interested in

ITCH messages about Google stock. The following filter matches

ITCH messages where the stock field is the constant GOOGL and

the price field is greater than 50:

stock == GOOGL ∧ price > 50

Packet subscriptions may also be stateful—i.e., their behavior

may depend on previously processed data packets. To specify a

stateful packet subscription, we can use operations on variables in

the switch data plane, such as computing a moving average over the

value contained in a header field:

stock == GOOGL ∧ avg(price) > 60

In addition to checking the stock field, this filter requires that the

moving average of the price field exceeds the threshold value

60. The macro avg stores the current average, which is updated

whenever the rest of the filter matches.
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h ∈ Packet headers

f ∈ Header fields

n ∈ Numbers

s ∈ Strings

v ∈ State variables (e.g., my_counter, see Figure 4)

g ∈ State aggregation functions (e.g., avg)

c ::= c1 ∧ c2 | c1 ∨ c2 | ! c | e Filter: logical expression

e ::= a > n | a < n | a == n | . . . Numeric constraint

| a prefix s | a == s | . . . String constraint

a ::= h.f | v | g (v0 . . . v𝑛) Attributes

Figure 1: Packet subscription language abstract syntax.

In general, a packet subscription is a logical expression of con-

straints on individual attributes of a packet or on state variables

(see Figure 1). Each constraint compares the value of an attribute

or a state variable (or an aggregate thereof) with a constant, using a

specified relation. The Camus subscription language supports basic

relations over numbers (e.g., equality and ordering) and over strings

(e.g., equality and prefix).

The packet subscription language is designed to be expressive

while also allowing for an efficient realization in the network [10].

In particular, the simple structure and semantics is easy to under-

stand, since it corresponds to a very basic query language such as a

subset of the WHERE clause of an SQL expression. The structure

and semantics is also versatile and expressive, since it can represent

non-trivial conditions over application-defined data within pack-

ets. And, crucially, subscriptions can be aggregated, using exact or

approximate reductions, and then compiled into appropriate table

structures for fast evaluation in network switches. As we will see

later in Section 5, the aggregation and reduction algorithms exploit

the simple structure of subscriptions, as well as the semantics of the

numeric and string relations.

The language also supports stateful predicates, to a limited extent.

First, it can only evaluate predicates that reason about local state. It

cannot filter on global state (e.g., the sum of values at more than one

device). Second, re-evaluating stateful predicates on multiple devices

can lead to unexpected results (e.g., the average of the average of

the average). Therefore, it only evaluates stateful functions at the

last hop switch before a subscriber. And, third, due to the underlying

hardware constraints, the types of computations it can perform is

limited. For these reasons, the stateful functions that it supports are

restricted to basic aggregations over tumbling windows, including

count, sum, and average. This is similar to systems such as Linear

Road [27] and Sonata [22].

3 NETWORK ARCHITECTURE

Adopting packet subscriptions as a new network abstraction requires

that we re-think the network architecture. Figure 2 illustrates the

architecture design. Subscribers express interest in messages, and

publishers send messages. The switches running the Camus pipeline

process the messages and forward them to interested subscribers.

Camus assumes a logically centralized controller with an om-

niscient view of the network (i.e., the current topology and device

state). One could imagine a decentralized version of Camus, whereby

each switch control plane runs the Camus compiler, and subscription

information is disseminated through the network (à la conventional

routing protocols). However, we leave such a design for future work.

Control plane rules +

Compiler data plane
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Compiler
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Rules 
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Figure 2: Overview of Camus.

Applications provide the controller with a set of filters written

in the Camus subscription language. The application domain is

characterized by a set of headers and corresponding packet formats.

Camus requires that headers and packet formats be specified through

user-provided P4 code.

The Camus controller combines the end-point subscriptions and

computes a global routing policy. We assume a static, hierarchical

network topology, such as a Fat Tree architecture. This architecture

is common in data-center networks [2], which is our expected de-

ployment for packet subscriptions. It also simplifies the job of the

controller, as the topology naturally forms tree-structures by simply

distinguishing links that go up or down the hierarchy. We discuss

how routing is handled by Camus in Section 4.

To implement the routing policy, the controller emits a set of local

rules that are compiled to run on the individual switches in the net-

work. These rules determine the runtime control plane configuration

of the switch, whereas the static data plane is configured once using

the user-provided packet format specification. Camus relies on pro-

grammable switch hardware [7, 53] to realize an application-specific

packet processing pipeline. Our prototype implementation uses the

P4 compiler to program the switch.

More specifically, the Camus compiler takes the generated rules

together with the P4 packet header specification, and generates two

outputs: (i) a P4 control block that specifies the control-flow and

match-action tables in the pipeline, and (ii) a set of control-plane

rules to populate the tables. The P4 compiler then takes the P4 parser

specification (packet format) and the control block generated by the

Camus compiler to generate the switch image for the packet process-

ing pipeline. We discuss the details of compiling and forwarding in

Section 5.

Forwarding with packet subscriptions requires that the generated

pipeline can parse application-specific message formats, which are

often deep in the packet header. In Section 6, we present techniques

to read deep into the packet, and process messages that have been

batched together into a single network packet.
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4 ROUTING ON SUBSCRIPTIONS

Routing, in general, is a complex issue that raises a number of chal-

lenges. In this paper, we evaluate two possible approaches to routing

with packet subscriptions on an arbitrary hierarchical datacenter

topology. These two strategies explore trade-offs between memory

and traffic. Neither of these schemes is “better”, in the sense that

the choice between them depends on the needs and resources of the

specific network.

Expected Datacenter Deployment. We assume a static, hierarchi-

cal network such as a Fat Tree [2] topology. This removes some

of the complexity of routing since the topology already enforces

tree-like structures in which all simple paths are shortest paths. Fig-

ure 3 illustrates an example with three levels in the hierarchy: a

top-of-rack layer (ToR), an aggregate layer, and a core layer.

Considering the chosen context (datacenters), Camus currently

relies on a centralized controller with a global view of the network.

However, there is nothing inherent in the design of packet subscrip-

tions that prevents the use of distributed routing protocols, like BGP

or OSPF.

Routing Policies. The main task of the controller is to convert the

subscriptions into a global routing policy, and then generate local

rules for every switch in the network to realize the policy.

A routing policy associates each port 𝑝 in a switch 𝑠 with a set

of filters 𝐹𝑠𝑝 . Switch 𝑠 forwards an incoming packet to all the ports

𝑝, other than the ingress port, such that the packet matches at least

one filter in 𝐹𝑠𝑝 . Figure 3 shows these associations for two policies

that we discuss below. The diagrams focus on the router along a

particular set of paths (a tree) taken by messages originating from

an ITCH publisher on the left-hand side of the network, and going

to two subscribers on the right-hand side. For each switch 𝑠 along

those paths, the diagrams show the local forwarding rules derived

from the corresponding sets 𝐹𝑠𝑝 .

Since we focus on specific paths, in the diagrams we refer to each

specific port numbers. However, Camus treats the upward ports of a

switch—those that link to higher-layer switches—as a single logical

up port. For example, ports 1 in the ToR and aggregate layers are all

up ports. When forwarding a packet to the up port, Camus actually

chooses one of the corresponding physical ports, at random or round-

robin (ECMP could be used for flow-based protocols). Also, a packet

received on one of the upward ports is never forwarded to the up

port.

As a general correctness condition, 𝐹𝑠𝑝 must match a superset of

the packets identified by the subscriptions of the hosts reachable

from switch 𝑠 through port 𝑝 (completeness). And when port 𝑝 leads

directly to a host ℎ, 𝐹𝑠𝑝 must match the exact set of packets to which

ℎ has subscribed (soundness). Different correct policies may then

differ in how precisely each set 𝐹𝑠𝑝 approximates the exact set of

packets that must be forwarded from 𝑠 through 𝑝. Intuitively, a loose

𝐹𝑠𝑝 would require fewer rules and therefore less switch memory, but

would also generate unnecessary traffic.

Camus implements two policies: one that favors memory (MR)

and one that favors traffic (TR), illustrated in Figure 3. In the first pol-

icy, every downward port 𝑑 is associated with a set 𝐹𝑠
𝑑

that matches

the exact (minimal) set of packets that are of interest to hosts reach-

able through 𝑑 , while 𝐹𝑠𝑢𝑝 is the true filter that matches every packet.

Algorithm 1: Routing in a Fat Tree network

Input: Network = (Hosts, Switches, access, up, down)

Input: access : Hosts→ (Ports × Switches)

Input: up : Switches→ (Ports × Switches)∗

Input: down : Switches→ (Ports)∗

Input: Subscriptions : Hosts→ Filter∗

Output: A set of sets of subscriptions 𝐹 = {𝐹𝑠𝑝 : 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 }

1 foreach switch 𝑠 and port 𝑝 do

2 𝐹𝑠𝑝 ← ∅

3 foreach ℎ ∈ Hosts do

4 𝑠, 𝑝 ← access (ℎ) ⊲ ℎ connects to 𝑠 on port 𝑝

5 𝐹𝑠𝑝 ← 𝐹𝑠𝑝 ∪ Subscriptions (ℎ)

6 foreach src ∈ Switches, bottom up do

7 𝐹 src ← ∅ ⊲ local, temporary set

8 foreach 𝑝 ∈ down(src) do

9 ⊲ bottom up, so 𝐹 src
𝑝 already computed

10 𝐹 src ← 𝐹 src ∪ 𝐹 src
𝑝

11 foreach dst, 𝑞 ∈ up (src) do src connects to dst on dst’s local

port 𝑞

12 𝐹 dst
𝑞 ← 𝐹 dst

𝑞 ∪ 𝐹
src

13 if memory policy then Memory Reduction

14 foreach src ∈ Switches do

15 𝐹 src
up ← {true}

16 else if traffic policy then Traffic Reduction

17 foreach src ∈ Switches do

18 dst, 𝑞 ← first up link ∈ up (src)

19 𝐹 src
up ← ∅

20 foreach 𝑝 ∈ down(dst) do

21 if 𝑝 ≠ 𝑞 then

22 𝐹 src
up ← 𝐹 src

up ∪ 𝐹
dst
𝑞

In the second policy, 𝐹𝑠up also matches the exact and therefore mini-

mal set of packets that are of interest to hosts reachable through (one

of) the up port. The controller uses Algorithm 1 to compute the filter

sets 𝐹𝑠𝑝 for all switches and ports.

Filter Approximation Scheme. In addition to the somewhat crude

approximation used in the memory reduction policy that simply

replaces all the filters associated with an up port with a single true

filter, we also develop a more refined approximation based on fil-

ter rewriting. This rewriting is specifically designed to control the

amount of false positives, and at the same time to favor aggregation

of filters. This aggregation is particularly beneficial in combination

with the optimizations performed by the Camus compiler for each

local switch.

The general idea of this approximation scheme is to rewrite indi-

vidual constraints so as to reduce the number of unique constraints.

One way to do that, is to discretize and therefore cluster the compari-

son constants used in the constraints. In particular, Camus rewrites all

numeric constants as multiples of a chosen discretization unit 𝛼 . For

example, choosing 𝛼 = 10, Camus would rewrite constraints price

> 53 and price > 57 as price > 50, and correspondingly

constraints price < 53 and price < 57 as price < 60.

As we show experimentally in Section 7, this simple scheme leads
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Figure 3: Routing on subscriptions in the Fat Tree topology: routing policies.

to significant improvements in the compilation time and also in the

aggregation of filters, at the expense of only a modest increase in

traffic.

Once the sets of filters are computed for each link, the Camus

controller turns these sets of subscriptions into an intermediate rep-

resentation, which is then compiled and installed onto the switch.

The intermediate representation appends a forwarding directive to

the subscription filter.

Returning to the running example, if the trading application run-

ning on a server connected to port 1 of a switch is interested in ITCH

messages about Google stock, then the localized rule at the last hop

switch would be:

stock == GOOGL : fwd(1)

The rule asserts if the field stock is equal to the constant GOOGL,

then the message should be forwarded to port 1. A forwarding action

may be unicast or multicast:

stock == GOOGL : fwd(1,2,3)

In this case, messages are forwarded to ports 1, 2, and 3.

The routing schemes we describe require that predicates are re-

evaluated at every switch that packets pass through. We considered

an alternative design in which paths through the network would be

enumerated, and predicates evaluated at the edge would attach a

tag indicating that a path that the packet would travel. This design

seemed like an appealing way to reduce the work done by each

switch. However, since multiple predicates can match on a given

packet, one would need to attach multiple path “tags”. Then the

switch would need to check for equality on all of these tags. So, there

would not really be an advantage, we would just need to generate an

equivalent rule that matched on tags instead of application header

fields. Nevertheless, we expect that there should be methods to

optimize the storage of rules, since there could be overlap in rules at

higher levels in the hierarchy.

5 FORWARDING WITH SUBSCRIPTIONS

With local subscriptions assigned by the controller to a switch, Ca-

mus sets up the forwarding structures on that switch. The key chal-

lenge is to compile subscriptions to forwarding structures that are

memory efficient and run at line-rate.

Camus compiles the rules into two steps: static and dynamic.

The static step is performed once per application, and generates the

1 header itch_order {

2 bit<16> stock_locate;

3 ...

4 bit<32> shares;

5 bit<64> stock;

6 bit<32> price;

7 }

8 @pragma query_field(itch_order.shares)

9 @pragma query_field(itch_order.price)

10 @pragma query_field_exact(itch_order.stock)

11 @pragma query_counter(my_counter, 100, 1024)

Figure 4: Specification for ITCH message format.

packet processing pipeline (i.e., packet parsers and a sequence of

match-action tables) deployed on the switch. The dynamic compila-

tion step is performed whenever the subscription rules are updated,

and generates the control-plane entries that populate the tables in the

pipeline.

This compilation strategy assumes long-running, mostly stable

filters. Supporting highly dynamic filters would require an incremen-

tal algorithm. Prior work has demonstrated that such incremental

algorithms are feasible. BDDs—our primary internal data structure—

can leverage memoization [48], and state updates can benefit from

table entry re-use [28].

5.1 Compiling the Static Pipeline

In general, a packet processing pipeline includes a packet parsing

stage followed by a sequence of match-action tables. The compiler

installs a different pipeline for each application, as different applica-

tions require different protocol headers, packet parser, and tables to

match on header fields.

To generate the static plane, users provide a message format

specification, based on data packets structured as a set of named

attributes. Each attribute has a typed atomic value. For example, a

particular ITCH data packet representing a financial trade would

have a string attribute called stock, and two numeric attributes

called shares and price.

Figure 4 shows the specification for the ITCH application. The

message format specification extends a P4 header specification with

annotations that indicate state variables and fields that will be used by

the filters. In the figure, lines 8–11 contain annotations indicating that
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Figure 5: BDD for three rules. Solid and dashed arrows repre-

sent true and false branches, respectively.

the fields shares, price, and stock from the itch_order

header will be used in subscriptions. Thus, the compiler should

generate P4 code that matches on those fields. As an optimization,

users may specify the match type. The annotation on line 10 specifies

that the match should be exact by appending the suffix _exact.

The annotation on line 11 declares a counter state variable. The first

argument is the name of the counter (my_counter) and the second

is its window size (100𝜇s).

To support state variables, the compiler statically pre-allocates a

block of registers that are then assigned to specific variables dynam-

ically. The compiler also outputs the necessary code to update state

variables in response to subscription actions at periodic intervals—

e.g., to implement the tumbling window used on line 11 in Figure 4.

Notice that the use (read/write) of state variable is determined by

subscription rules, which are not known statically. Therefore, the

static compiler outputs generic code for various update functions,

and the dynamic compiler effectively links subscription actions to

that code. In particular, the dynamic compiler links an update ac-

tion of the general form 𝑣 ← 𝑓 (args) with a subscription action

by associating that action to what amounts to pointers to 𝑣 , 𝑓 , and

args. However, the dynamic compiler in our current prototype only

supports actions without arguments.

5.2 Compiling Dynamic Filters

A naïve approach for representing subscription rules would use one

big match-action table containing all the rules—each rule would be

encoded using a single table entry. However, this approach would be

inefficient because the table would require a wide TCAM covering

all headers but containing only a few unique entries per header.

Furthermore, programmable switch ASICs only support matching

a single entry in a table, but a packet might satisfy multiple rules.

Hence, we would require a table entry for every possible combination

of rules, resulting in an exponential number of entries in the worst

case.

Instead, our compiler generates a pipeline with multiple tables

to effectively compress the large but sparse logical table used by

the program. To do this, the compiler represents the subscription

rules using a binary decision diagram (BDD) [1, 9]. BDDs are often

used to obtain compact representations of functions on a wide input

domain for which a single table would be too large. A BDD is a

rooted acyclic graph in which non-terminal nodes encode conditions

on the input and terminal nodes encode the result (see Figure 5).

Match
Actionshares

< 60 state ← 1
> 100  state ← 2

* state ← 6

Match
Actionstate stock

1 AAPL state ← 3
1 * state ← 6
2 MSFT state ← 4
2 * state ← 5

Match
Actionstate

3 fwd(3)
4 fwd(1,2)
5 fwd(1)
6 drop()

Stock Table Leaf TableShares Table

Figure 6: Table representation of the BDD in Figure 5.

The evaluation of the overall function of the BDD that encodes

all subscription rules starts at the root node and recursively evaluates

the conditions (if) at each node, proceeding to the true (then) or false

(else) branch as appropriate. Evaluation terminates when it reaches

a terminal node (actions).

We now briefly describe the algorithm for building a BDD out of

subscriptions rules. What is important for our purposes is to define

the structure of the BDD, so we can implement the BDD evaluation

as a sequence of table lookups.

Representing Rules with a BDD. The subscription rules are first

normalized into disjunctive form, yielding a set of independent rules

in which the condition in each rule consists of a conjunction of

atomic predicates. An atomic predicate is defined by an equals,

greater-than, or less-than relationship between a field and a constant.

For example, the rules in Figure 5 are in disjunctive normal form.

The compiler then builds the BDD incrementally by evaluating the

condition at each node using the Shannon expansion and adding

nodes for the predicates in the condition as needed.

The compiler reduces the BDD using a combination of standard

and domain-specific transformations. (i) If two nodes are isomorphic,

one is deleted. The incoming edges of the deleted node are updated

to point to the remaining copy. (ii) If both outgoing edges of a node

point to the same successor, then that node is deleted. The incoming

edges of the deleted node are updated to point to the successor.

(iii) If any ancestors 𝑛′ of a new node 𝑛 implies that 𝑛 is always

true or always false, then 𝑛 is not added; instead, it reduces to a

direct connection to its true or false branch, respectively. The overall

effect is to share common structure and remove redundant nodes and

unsatisfiable paths [14].

As is standard in ordered BDDs, the conditions in the BDD are

arranged in a fixed order. For example, every path in the BDD of

Figure 5 consists of a sequence of atomic predicates such that the

conditions on field shares precede the conditions on field stock.

This is essential for the representation and evaluation of the BDD as

a sequence of table lookups, as we discuss next. The choice of an

order can significantly impact the size of a BDD. Determining an

optimal field order is NP-hard, but simple heuristics often work well

in practice.

BDDs to Tables. The BDD can be seen as a state machine, where

each state corresponds to a predicate, and the transition function is

the evaluation of the predicate on the input packet. However, this

naïve evaluation would require an excessively long sequence of

evaluation steps. We instead implement BDD evaluation using a

fixed-length pipeline.
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Algorithm 2: Translating BDD to Tables

Input: The BDD graph, 𝐺

Output: A set of tables𝑇𝑓 : state × dom(𝑓 ) → state

1 foreach field 𝑓 do

2 𝐶𝑓 ← subgraph of 𝐺 predicating on field 𝑓

3 In← {𝑛 ∈ 𝐶𝑓 with in-edges from outside 𝐶𝑓 }

4 Out ← {𝑛 ∉ 𝐶𝑓 with in-edges from 𝐶𝑓 }

5 foreach path 𝑝 = (𝑢 ∈ In, . . . , 𝑣 ∈ Out) in 𝐶𝑓 do

6 range← ⊤ ⊲ all allowable values for field 𝑓

7 foreach node 𝑛 ∈ 𝑝 do

8 range← range ∩ predicate(𝑛)

9 𝑇𝑓 ← 𝑇𝑓 ∪ {(𝑢, range) ↦→ 𝑣 }

Since every path in the BDD traverses predicates that consider

fields in order, and that order is the same for every path, we use that

ordering to effectively slice the BDD into a fixed number of field-

specific components. Each component is a subgraph of the BDD

that contains all and only those nodes that predicate on a particular

field. By extension, we also consider the set of terminal nodes as a

component. For example, the BDD in Figure 5 has three components

consisting of the blue, yellow, and red nodes, corresponding to the

shares and stock fields, and to actions, respectively.

We can now consider the evaluation of the BDD as a state-

machine at the level of the field-specific components. Thus the

transition function out of the component of field 𝑓 depends on the

value of field 𝑓 in the packet. However, since the component of field

𝑓 is a macro-state corresponding to potentially many states of the

BDD, the transition function must also depend on the BDD state in

which we enter the component. This entry BDD state and the value

of field 𝑓 are necessary and sufficient to determine the path through

the component of field 𝑓 and therefore the transition function for that

component. We represent this transition function as a match-action

table where we match on the entry state and on the value of field 𝑓 ,

and where the action points to the next component and BDD state.

Figure 6 shows all the component-specific match-action tables

corresponding to the transition functions for the BDD of Figure 5.

The three tables also define the three-stage processing pipeline. The

evaluation through the pipeline stores the current BDD state in

metadata. The initial state is set to 0 and can be omitted entirely

from the first table. The actions define the entry state for the next

stage, except for the Leaf table where the action corresponds to

the overall evaluation of the BDD. For example, the rightmost path

through the BDD in Figure 5 corresponds to the path through the

2nd, 4th, and 3rd entries of the Shares, Stock, and Leaf tables in

Figure 6.

Notice that it is possible for multiple rules to match the same

packet. For example, in Figure 5, the first two rules could match

the same packet, so the actions fwd(1) and fwd(2) are merged

into the single action fwd(1,2). The compiler translates this to

forwarding to a multicast group that comprises ports 1 and 2.

We compute the transition tables with Algorithm 2. In essence,

for each field-specific component 𝐶𝑓 in the BDD, Algorithm 2

identifies a set of In nodes within 𝐶𝑓 that are the destinations of

all the edges that enter 𝐶𝑓 from components of preceding fields,

and a set of Out nodes outside 𝐶𝑓 that are the destinations of all

the edges that exit from 𝐶𝑓 to components of succeeding fields.

Then Algorithm 2 computes the transition table by iterating over all

the paths that connect In and Out nodes. In general, a BDD could

have an exponential number of such paths. However, the domain-

specific optimizations we use guarantee that there is at most one

path between any pair of In and Out nodes, which in turn guarantees

that the number of paths is at most quadratic.

Resource Optimizations. One of the scarce resources in switching

ASICs are TCAM memories that allow matching on a subset of

bits in headers but consume large area of die and high power. The

compiler uses three techniques to reduce TCAM usage. First, by de-

fault the compiler generates P4 code that implements range matches,

which usually require an expensive TCAM lookup. However, the

user can guide the compiler by specifying a matching type for each

field that may not require a TCAM lookup. Second, matching on a

range in TCAM is not scalable to hundreds of thousands of ranges

as each range-match requires multiple TCAM entries (𝑂 (#𝑏𝑖𝑡𝑠)). To

cope with this, the compiler uses exact matches instead of range

when possible, allowing it to leverage SRAM while saving TCAM.

Third, some fields, like shares, will probably have only a few

unique range predicates. The compiler can map values for that field

and the corresponding range predicates onto a lower-resolution do-

main (e.g., 8-bits).

6 EFFICIENT PACKET PARSING

There are two major challenges that Camus must address with respect

to packet parsing: (1) generating multiple copies of a packet with

different subsets of messages, and (2) parsing deep inside the packet

to handle all application messages.

There are three key observations about the functionality of the

hardware that we leverage for efficient parsing. First, a switch may

advance arbitrarily deep in a packet in the parsing stage if the packet

bytes are not written to the Packet Header Vector (PHV) that is sent

through the programmable pipeline. Second, packets may only be

replicated in the cross-bar between the ingress and egress pipelines.

Third, a number of ports may be dedicated as recirculation or loop-

back ports, which re-send packets back through the pipeline. Recir-

culating a packet effectively increases the depth of the processing

pipeline, allowing for additional processing at the expense of slightly

increased latency and reduced overall throughput.

Per-subscriber Subsets of Messages. To send different subsets of a

message to different destinations, Camus uses the following strategy.

First, the ingress pipeline creates a port mask that indicates which

messages should be sent to which port on a switch. Next, in the

crossbar, Camus replicates the packet, creating a separate copy for

each output port. Finally, at egress, Camus uses the port mask to

prune different messages from each of the replicas, filtering appropri-

ately for each port. To avoid sending the port mask from ingress to

egress naïvely, which would add bandwidth overhead, Camus uses a

domain-specific optimization. It stores the mask in an unused packet

header field (e.g. ethernet.srcAddr, which will be overwritten

at the end of the pipeline anyway).

Parsing Deep. Since hardware switches have limited memory for

carrying packet data through the programmable pipeline, it may not

be possible to parse all application-level messages in a single pass.

To parse deep, Camus processes the messages in multiple parallel
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Figure 7: ITCH ingress parser for 3 loopback ports.

passes after the first pass. In the first pass, it multicasts packets on

recirculation ports to make multiple copies. When the copies return

to ingress, each recirculation port starts parsing at different offsets

of each copy. This technique is implemented in a parser loop: the red

boxes in Figure 7 show that in each iteration the parser matches on

a counter; updates the counter; and shifts the parser buffer without

extracting any headers. Then, the parser reads messages and finally

truncates the outgoing packets using another loop to remove the

messages that cannot be parsed (blue boxes). This design is also

extensible to multiple recirculation passes.

7 EVALUATION

The central thesis of this paper is that the network can and should

provide efficient pub/sub communication. To evaluate this claim, we

have deployed three applications on a network running our packet

subscriptions prototype, Camus. We relate our experiences running

the applications to demonstrate qualitatively that packet subscrip-

tions are expressive and beneficial. The evaluation focuses on opera-

tional aspects, demonstrating that the abstraction can be practically

and efficiently implemented and deployed.

Overall, the evaluation focuses on three main questions:

(1) Do applications benefit from the use of packet subscriptions?

(2) Are packet subscriptions efficient, in terms of performance and

memory?

(3) Is routing with packet subscriptions efficient, in terms of traffic

load and FIB memory?

Implementation. The evaluation uses our prototype compiler imple-

mentation, which was written in OCaml, and is publicly available 1.

The compiler parses the application specifications written in P416 us-

ing the p4v library [36], patched to support our custom annotations.

We use our own implementation of a multi-terminal BDD library

with reduction optimizations.

Experimental Setup. We ran Camus in our cluster with three 32-

port Barefoot Tofino switches and four servers, with varying topolo-

gies. Each server was running Ubuntu 16.04 on 12 cores (dual-socket

1https://github.com/usi-systems/camus-compiler
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Figure 8: ITCH experiments with two different workloads.

Intel Xeon E5-2603 CPUs @ 1.6GHz), 16GB of 1600MHz DDR4

memory, and Intel 82599ES 10Gb or Mellanox ConnectX-5 100Gb

Ethernet controllers.

7.1 Market Data Filter

Financial exchanges, such as the Nasdaq stock market and the

Chicago Mercantile Exchange, publish price and trade-related in-

formation in market data feeds. Different exchanges use different

message formats. Nasdaq publishes data in the ITCH format.

ITCH data is delivered to subscribers as a stream of IP multicast

packets, each containing a UDP datagram. Inside each UDP data-

gram is a MoldUDP header containing a sequence number, a session

ID, and a count of the number of ITCH messages inside the packet.

There are several ITCH message types. An order message indi-

cates a new order that has been accepted by Nasdaq. It includes the

stock symbol, number of shares, price, message length and a buy/sell

indicator. In the descriptions below, packet subscriptions can refer

to fields in the traditional header stack, or in the application-specific

message format.

The first application is an implementation of the Nasdaq ITCH

Market data feed filter and router. The feed is delivered as a stream of

IP multicast packets. The switch splits ITCH packets into multiple

messages, and forwards them to back-end servers based on the

subscription.

We evaluated latency in the context of processing ITCH mes-

sages. In the experiment, a publisher sends a feed of ITCH messages

to a subscriber that filters the feed for add-order messages with

https://github.com/usi-systems/camus-compiler
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Figure 9: Filtering INT packets from a 100G link.

stock symbol GOOGL. We measured the end-to-end latency, between

publication and delivery.

The publisher and subscriber (both using DPDK) are collocated

on a server for accurate timestamping, and communicate using sepa-

rate NICs connected via the switch. We ran the experiment in two

configurations: in the baseline configuration, the subscriber performs

the filtering; in the second configuration, the filtering is done on the

switch with Camus. We used two workloads: a Nasdaq trace from

August 30th 2017 and a synthetic feed with multiple ITCH messages

per packet (Zipf distribution). The number of messages of interest

(i.e. for GOOGL) is 0.5% of the Nasdaq trace, and 5% of the synthetic

feed. We sent the feeds at 8.25 Mpps, which is 90% of the maximum

filtering throughput of the subscriber. To be clear, Camus can run at

a much higher throughput, but we slowed down the feed rate for the

subscriber.

Figure 8 shows the latency CDF for both workloads. For the Nas-

daq trace, all messages arrived within 50us with Camus, compared

to 300us for the baseline. For the synthetic workload, 99.5% of the

messages arrived within 20us with Camus, compared to 96.5% with

the baseline. Overall, filtering messages on the switch with Camus

reduces the tail latency, allowing applications to meet their latency

requirements under high throughput.

7.2 Network Telemetry Analytics

One recent approach to network monitoring is to collect fine grained

statistics on every packet that passes through a switch [23, 25]. Once

the data is collected, it is sent to an analytics system for process-

ing, such as Barefoot Networks Deep Insight [5] or Broadcom’s

BroadView Analytics [8]. These analytics systems are usually built

following the Lambda architecture design [37] (e.g., Spark [55] for

anomaly detection, Cassandra [33] for storage, and Kafka [32] for

communication), which requires each of the components to scale out

to cope with the input load. We used Camus to filter and route inter-

esting (i.e., anomalous) events from the stream of in-band network

telemetry (INT) data. For example, the subscription can select events

indicating flows that experience high latency. In this application,

Camus performs the work normally done by Kafka and Spark. It

is also worth mentioning that while systems like Kafka and Spark

offer features not provided by Camus (e.g., fault tolerance), for high-

throughput analytics processing, these features are often disabled to

achieve better performance.

Clients
ProducerhICN

Forwarder

Figure 10: Topology for hICN video streaming experiment.
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Figure 11: Lower tail latency for uncached content in hICN.

For the INT filtering application, we compared with a C program

running in userspace and a C program using DPDK, both running

on a commodity server. To generate a high-bandwidth packet stream,

as one would expect when collecting data from a realistic datacenter,

we used a switch to generate a stream of INT packets on a 100G link.

We used filters that match less than 1% of the packets. The filters

check that the INT packet passed through a switch with a latency

above a threshold, for example:

int.switch_id = 2 and int.hop_latency > 100

Figure 9 shows the results. DPDK has better performance than

the plain C program, but is fundamentally limited by the CPU clock

speed: at 1.6GHz, spending about 100 instructions per packet, DPDK

can process 16 Mpps. Camus, on the other hand, processes the whole

100G stream at line rate. Moreover, we found that the software based

filtering does not scale with the number of filters: the latency for

DPDK drastically increases after 10K filters. Camus installs the

filters in hardware memory, so it has low latency, regardless of the

number of filters.

7.3 Streaming Video

Video streaming is a powerful use case for pub/sub communication,

since there is a single publisher and an unknown number of sub-

scribers. Because many subscribers want the same content, network

bandwidth can be reduced by caching copies in the network.

Prior work on Information Centric Networking (ICN) made this

same observation, and several systems have implemented some com-

bination of pub/sub communication and in-network caching [13, 30].

Notably, Cisco has recently developed an ICN-style network archi-

tecture to address the problem of streaming to clients in unknown

locations in 5G networks [17]. Their system, named hybrid ICN

(hICN) [40] embeds a content identifier in an IP address, allowing

content to be routed in a heterogeneous (hybrid) network of stan-

dard L2 hardware switches and software-based hICN forwarders.
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Figure 12: Compiler BDD memory efficiency

The hICN forwarders serve as content caches. While the caches

can reduce latency and improve bandwidth utilization, they are only

effective for “hot” content that is likely to reside in the cache. If

there are many cache misses, then the software-based forwarder can

become a bottleneck.

The design of the system could be improved if packets were

only sent to a forwarder if a cache hit were likely. We used Camus

to implement this improved design. We wrote Camus subscription

filters that refer to meter state and content identifier. The filters only

route packets to the software forwarders if the meter rate exceeds

a threshold (i.e., a cache hit is likely). Otherwise, packets are sent

upstream through other hardware switches, on the path to the original

producer of the content.

There are two benefits of our approach: it reduces the load on

the hICN forwarder and reduces the latency for "cold" content by

bypassing the cache. To evaluate this claim, we deployed the VPP/D-

PDK [51] implementation of hICN with the topology in Figure 10.

On two clients we ran the hICN performance measurement tool,

hiperf, to stream content for the same identifier, while in parallel

another client pulled content for many different identifiers, which are

unlikely to be cached. First we ran a baseline IPv6 setup where all

the requests from the clients pass through the hICN forwarder, which

processes packets at about 3.5 Gbps. Then, we ran with the Camus

stateful predicates, which only sends “hot” requests to the forwarder.

Figure 11 shows the latency for receiving data that is unlikely to be

cached. Camus reduces the 95th percentile latency by 21%, because

it detects requests for uncached data, and thus avoids the latency of

the forwarder. Furthermore, the reduced load on the hICN forwarder

allows it to stream to the other clients at a throughput 3% higher

than the baseline.

SRAM TCAM MCast Groups

ITCH (100K filters) 3.7% 4.17% 46%

INT (100K filters) 0.73% 3.45% 0%

hICN (1M filters) 74.9% 0.69% 0%

Table 1: Switch resource usage for three applications.

7.4 Efficiency of Forwarding

We evaluate the efficiency of forwarding with Camus in terms of

performance and memory usage.

Performance. Camus can support the full switch bandwidth of

6.5Tbps. The latency of the pipeline, which depends on the ap-

plication, is less than 1𝜇s.

Memory. We compare the memory usage of our compiler to a base-

line of naïvely representing all the filters in one big table (see Sec-

tion 5). One big table has entries for all permutations of overlapping

queries; workloads with similar queries cause an explosion in the

table size. We chose this baseline because it is an intuitive represen-

tation of query forwarding logic. We generated workloads using the

Siena Synthetic Benchmark Generator [47], which has been used to

evaluate prior work in pub/sub systems [12]. Figure 12 shows the

total size of the tables (number of entries times entry width) as we

vary: (a) the number of subscriptions; and (b) the selectiveness of

subscriptions (number of predicates).

Given the low growth rate of table entries as workloads become

more complex, the experiments show that Camus uses available

space effectively, especially compared to the baseline. More selective

subscription conditions (i.e. more predicates per filter) require fewer

entries, because they result in fewer paths in the BDD.

To understand the memory implications for applications, we mea-

sured the switch resource usage for the three applications with differ-

ent filter sizes. For ITCH we generated filters of the form “stock

== S ∧ price > P: fwd(H)”, where S is one of a 100 stock

symbols, P is in the range (0, 1000) and H is one of 200 end-hosts.

For INT we generated the filters described in Section 7.2 with 100

switches and 1000 hop_latency ranges. For hICN (described in

Section 7.3) we used 1M unique content identifiers. Table 1 shows

that these applications are well within the limits of the switch re-

sources. In fact, these applications can be deployed together, or with

other other standard network functionality. ITCH is the only appli-

cation that makes heavy use of multicast groups, which is because

many end-hosts have overlapping filters.

7.5 Efficiency of Routing

We evaluate the routing efficiency, both in terms of memory usage

and compile time, for different layers in the network.

Memory. We compare the switch memory usage at various layers

of a Fat Tree topology for different routing policies and with the

approximation described in Section 4. We used Mininet [38] to

emulate the topology depicted in Figure 3 with 20 switches and 16

hosts that publish and subscribe to an ITCH feed. The filters were

generated with the synthetic benchmark generator described in the

previous section.
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Figure 13: Switch memory usage and compile time for two routing policies and approximation.

Figures 13a and 13b show the memory usage for the two policies

with an increasing number of filters, where each filters checks three

variables. With the MR policy, the Agg and ToR layer only need to

store southbound filters, which uses less memory. On the other hand,

the TR policy requires storing the filters from the whole network.

The TR policy uses more memory but can utilize the bandwidth

more efficiently which results in less congested links in the network.

Figures 13a and 13c show that memory usage is reduced by by

discretizing the filters while aggregating filters at different layers in

the network. Although this approximation reduces both compile time

and memory usage, it causes extra traffic in the network. Figure 13d

illustrates the correlation between the discretization unit (𝛼) and the

percentage of extra traffic forwarded in the core layer of the network.

Dynamic Reconfiguration. When subscriptions change, or if there

is a change in network topology (e.g., caused by a link or switch

failure), the runtime table entries need to be recompiled. We evaluate

how the compile time of runtime table entries is affected by the num-

ber of subscriptions and the number of variables each subscription

contains. Figure 13e shows the time to recompile the BDD tables

for the MR policy with 𝛼 = 10. These results are similar for TR

(Figure 13f) and are two orders of magnitude faster than without

approximation (i.e. 𝛼 = 1). The bottleneck is compiling the ToR

layer, since it stores all the original (i.e. unapproximated) subscrip-

tions. Whereas the MR policy only needs to recompile entries for

8 out of the 20 switches, the TR policy must recompile entries for

all switches. Moreover, the compile time is negligible for 1 to 2

variables, which is a reasonable number of variables for applications

like INT and ITCH.

8 RELATED WORK

Packet subscriptions can be seen as a domain-specific language

for networking. Another perspective is to see packet subscriptions

as a network-level implementation of publish/subscribe messaging

system.

Network Programming Languages. Several languages support the

configuration of networks of programmable switches, including Fre-

netic [21], Pyretic [39], Merlin [49], and NetKAT[3]. Packet Sub-

scriptions differs from this work in that it is more than a control-plane

language for network designers or administrators. In particular, it pro-

vides stateful filtering rules that realize a form of in-network process-

ing, and therefore amount to data-plane programs. The Marple [41]

language also evaluates queries in-network, but for the domain-

specific application of network telemetry. The packet subscription

compilation algorithm is similar to the FDD compilation algorithm

by Smolka et al. [48].

Publish/Subscribe Messaging Systems. Packet subscriptions are

comparable to application-level middleware messaging services,

such as Kafka, ActiveMQ [4], and Siena [12]. Eugster et al. pro-

vide a comprehensive survey of pub/sub systems [19]. Packet sub-

scriptions are also comparable to the large body of prior work on

information-centric networking (ICN) [43, 52, 54]. ICN is founded

on the idea of addressing data packets using symbolic names rather
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than network addresses. Prior work reports throughput limits that are

well below those of packet subscriptions. Also, notice that these sys-

tems implement a stateless prefix matching, which is a problem that

is significantly simpler than the content-based and stateful filtering

of packet subscriptions.

9 CONCLUSION

Today, networks provide a lower level of abstraction than what

is expected by modern distributed applications. This paper argues

that the emergence of programmable data planes has created an

opportunity to resolve this incongruity, by allowing the network to

offer a more expressive interface.

The core technical contributions of this paper include the design of

an expressive filter language that generalizes traditional forwarding

rules; a set of algorithms for routing with packet subscriptions; and

techniques for compiling complex filters to reconfigurable network

hardware using BDDs.

These techniques are widely applicable to a range of network

services. As a demonstration, we have used our prototype controller

and compiler to build a diverse set of applications, including a

financial application for filtering market feeds; detecting network

events using INT; and stateful forwarding of hICN streams. These

applications demonstrate predictable, low-latency packet processing

using the full switch bandwidth.
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